Nanomanufacturing University of Michigan ME599-002 |Winter 2010

04: Electronic properties of nanostructures

January 25, 2010

John Hart, Aaron Schmidt ajohnh@umich.edu http://www.umich.edu/~ajohnh

Announcements

- PS1 due next W Feb/3
 - Some material is yet to be covered in lecture
- Mostafa's office hours Th 4.30-6.30, 1363 GGB

Energy carriers

- Electron subatomic particle carrying a negative charge
 → interaction between electrons is the main cause of chemical bonding
- Photon quantum of electromagnetic field and the basic unit of light
- Phonon a quantized mode of vibration in a lattice
- Exciton a "quasiparticle", a bound state consisting of an electron and a hole
 → formalism for transporting energy without transporting net charge

Size effects and confinement

- Classical size effects: When the carrier mean free path is comparable to the size of the system → the boundaries become important.
- Quantum size effects: When the carrier wavelength is comparable to the size of the system → the waves interfere in a coherent way, causing discretization of allowable energy levels.
 - The density of states is restricted
 - The band structure changes with size of the material
 - Due to aspect ratios, properties of a nanostructure can be highly anisotropic
 - The boundaries are also important in this regime

 Ψ = wavefunction (complex function of position and time) $|\Psi|^2$ = probability density ©2010 | A.J. Hart | 5

Size-dependent color of quantum dots

1.5 nm

Frankel, Bawendi.

Absorption and emission

http://www.evidenttech.com/quantum-dots-explained/how-quantum-dotswork.html

Idealized band model for a quantum dot, assuming strong confinement

$$E_{nl} = E_g + \frac{2\hbar^2}{\mu} \frac{\chi_{nl}^2}{D^2} \qquad \mu^{-1} = m_e^{-1} + m_h^{-1}$$

©2010 | A.J. Hart | 8

Gaponenko.

As size increases (confinement decreases), absorption approaches bulk character

Figure 1. Absorption spectra of a size-series of large CdS nanocrystals ranging from 3.7 ± 0.4 nm to 5.2 ± 0.4 nm in diameter. The longest wavelength absorption feature occurs at a) $\lambda = 422$, b) 427, c) 432, d) 435, e) 439, f) 444, and g) 448 nm.

©2010 | A.J. Hart | 9

Alivisatos.

Examples: different semiconductor crystals

Michalak et al., Science 307:538-544, 2005.

Manufacturing: tuning optical properties by synthesis conditions

Fig. 4. Size series for samples prepared using four TOPSe concentrations: 1:1 Se/Cd, 2:1 Se/Cd, 5:1 Se/Cd, and 18:1 Se/Cd. For each TOPSe concentration, the average NC size was controlled by varying the temperature at a fixed flow rate. From bottom to top, the positions of the band-edge absorbance peaks in nm (and average NC radii in nm) are as follows: 510 (1.52), 535 (1.78), 545 (1.90), 551 (1.98), 555 (2.03), 561 (2.10), 569 (2.20), 575 (2.27), 579 (2.32), 585 (2.39), 592 (2.48), 586 (2.40), 597 (2.55), 606 (2.70).

Alivisatos.

Imaging with quantum dots

- Previous technology = fluorescent proteins
- New technology = semiconductor nanoparticles
 - Narrow emission peaks
 - Size-dependent emission
 - Long lifetime (resists photobleaching, i.e., photochemical degradation)
 - Diverse chemical linkages to surfaces
- Typical emission lifetimes (at ~10⁵ photons/s)
 - Green fluorescent protein = 0.1-1 s
 - Organic dye = 1-10 s
 - CdSe/ZnS quantum dot = 10⁵ s

Tumors

Injection site

Gao et al., Nature Biotechnology 22(8):969-976, 2004. http://en.wikipedia.org/wiki/Photobleaching

Commercially-available quantum dots

Product Development & Business Units

We team with top companies to develop products based on our proprietary quantum dot technology. Our teaming formula can save time and money getting to market, accelerate market penetration, and drive product revenue.

Fast-tracking Quantum Dot Products to Market Quantum Dots for Product Development

Quantum dot products overcome many limits of existing fluorescent labels and probes.

Security & Markings

Better security and brand protection through quantum dots. LEDs / Displays New LED colo application fle with quantum technologies.

Add to cart:										
490nm 💌	50 mg 💌	Add to Cart								

http://www.evidenttech.com

Quantum dot LEDs

Light Emitting Diodes

More Color Possibilities. More White Light Possibilities.

evidot[®] LEDs provide new colors to solid state lighting, including tunable white LEDs with full spectrum control and high CRI capability.

uctor nanocrystals. Quantum dots are ptical properties - their emission color can ause of these unique optical properties, his provides more color options and better nge of colors and a number of package e for a detailed overview of our LED

Shown: Aqua, Lime, Pink, Lemon, and Tangerine.

http://www.evidenttech.com

Today's agenda

- Dispersion relations and carrier statistics
- Development of band structure
- Examples:
 - Single electron transistors
 - Electrical properties of CNTs

Today's readings

Nominal: (on ctools)

- Chen, Section 3.2
- Rogers, Pennathur, and Adams, excerpt on Nanoelectronics, from <u>Understanding Small Systems</u>
- Avouris, "Carbon-based electronics"

Extras: (on ctools)

- Sheldon et al., "Enhanced semiconductor nanocrystal conductance via solution grown contacts"
- Ho et al., "Scaling properties in transistors that use aligned arrays of single-walled carbon nanotubes"

©2010 | A.J. Hart | 17

More on crystals

Chen.

- Many transport properties are determined by periodicity of the atomic lattice.
- Atomic arrangement determines allowable energy levels (recall from QM: wave modes) of energy carriers.
- In the literature, information is presented in reciprocal space.

Real space vs. reciprocal space lattices in 3D

Figure 3.8 Conventional and primitive unit cells in real and reciprocal unit cells of an fcc lattice (a) in real space, (b) in reciprocal space.

©2010 | A.J. Hart | 18

Chen.

Dispersion relations

 Dispersion relation: the relationship between energy and momentum (frequency and wave-vector)

- Light in vacuum:
$$\omega=ck$$

 In real materials, dispersion relations for electrons, phonons, photons, etc. are complicated: frequency a more complex function of wavelength

Electrons in a periodic system

The "free" electron

Schrodinger equation:
$$-\frac{\hbar^2}{2m}\frac{d^2\Psi}{dx^2} - E\Psi = 0$$

$$\Psi(x) = A \bullet \exp(-ikx) + B \bullet \exp(ikx)$$
 $E = \frac{\hbar^2 k^2}{2m}$

Parabolic dispersion

A periodic potential

©2010 | A.J. Hart | 20

Chen.

Conductors vs. insulators

Figure 3.7 Distribution of electrons (gray area) in (a) a covalent bonding crystal and (b) a metallic bonding crystal (after Ashcroft and Mermin, 1970).

Chen, chapter 3.

Electrons in a periodic system

Figure 3.11One-dimensional periodic potential model: (a) sketch of atomic potential; (b) Kronig-Penney model.

$$-\frac{\hbar^2}{2m}\frac{d^2\Psi}{dx^2} + (U-E)\Psi = 0 \qquad U(x) = \begin{cases} 0 & 0 < x \le a \\ U_0 & -b < x \le 0 \end{cases}$$

Bloch theorem: $\Psi[x + (a + b)] = \Psi(x) \exp[ik(a + b)]$

Chen, chapter 3.

Dispersion relation -> energy gaps

 Wave effects leads to certain energies (frequencies) that are forbidden: band gaps

Chen, chapter 3.

Some band diagrams of real materials

Plotted along directions of high symmetry

Chen, chapter 3.

Carrier statistics

- The occupation function, f(E): Expected number of carriers with a given energy
- This is determined by statistical physics and carrier interactions, i.e. Pauli exclusion

• Fermions (Electrons, holes): $f(E) = \frac{1}{\exp\left(\frac{E-\mu}{k_{\rm B}T}\right) + 1}$

• Bosons (Photons, phonons): $f(E) = \frac{1}{\exp\left(\frac{E}{k_{\rm B}T}\right) - 1}$

 μ is called the chemical potential. It's where occupancy is ½. At T = 0 K, μ is called the Fermi Energy and is the highest filled energy state

The actual number of carriers in a state, per unit volume and energy: $n(E) = f(E) \times DOS$

Metal, semiconductor, insulator

Fermi energy

Rogers, Pennathur, Adams.

Fermi energy

Rogers, Pennathur, Adams.

Metal, semiconductor, insulator

a practical semiconductor has \approx 3 eV band gap

Chen, chapter 3.

Band formation from atoms

• Simple model for a solid: the one-dimensional solid, which consists of a single, infinitely long line of atoms, each one having one s orbital available for forming molecular orbitals (MOs).

When the chain is extended:

→ The *range of energies* covered by the MOs is *spread*

→ This range of energies is filled in with *more and more orbitals*

→ The *width of the* range of energies of the MOs is *finite*, while the number of molecular orbitals is *infinite*: This is called a *band*.

Single electron transistor (SET)

Rogers, Pennathur, Adams.

in a field-effect

unnel through the Coulomb blockade energy barrier to the quantum dot. Once the electron is on it, the dot's A single-electron transistor (SET). As opposed to the semiconductor channel in a field-effect transistor, the SET has an electrically isolated quantum dot located between the source and drain. (a) The The corresponding potential energy diagram shows that it is not energetically favorable for electrons in the source to tunnel to the dot. (b) The SET in "on" mode. At the lowest setting, electrons tunnel one at a time, via the dot, from source to drain. This is made possible by first applying the proper gate $=e/2C_{dot}$ so that the potential energy of the dot is made low enough to encourage an electron to potential energy rises. The electron then tunnels through the Coulomb blockade on the other side to reach the ower potential energy at the drain. With the dot empty and the potential lower again, the process repeats. SET in "off" mode. FIGURE 6.18 gate voltage, V

Single electron transistor

FIGURE 6.19 The electrical behavior of an ideal SET as a function of gate voltage. The number of electrons on the quantum dot is zero until the Coulomb blockade is overcome at $V_{Coulomb}$, at which point electrons tunnel one at a time from the source to the drain via the quantum dot. Because the energy on the dot is quantized, only discrete gate voltages enable the tunneling of electrons and consequent increases in the number of electrons in the dot. The separation between these gate voltages is e/2C. This is the voltage necessary to increase the number of electrons on the dot by one. The current-versus-voltage chart at the bottom shows the corresponding spikes in the source-to-drain current through the transistor at discrete gate voltages. Between the spikes, the number of electrons on the dot remains fixed. Typical gate voltages for such a device are a few millivolts; typical source-to-drain currents are in the picoampere range.

Rogers, Pennathur, Adams.

CNT lattice and unit cell

Charlier et al., Review of Modern Physics 79(2), 2007.

"Closing" a CNT: forced periodicity

 Like the 0D quantum well, the geometric constraint of a seamless CNT forces periodicity on the wavefunction in the circumferential direction.

Figure 3.15 The von Karman boundary condition joins the two boundary points in (a) into a periodic loop in (b).

©2010 | A.J. Hart | 35

Chen.

Fig. 4.14. Allowed k-vectors of the (5,5), (7,1) and (8,0) tubes mapped onto the graphene Brillouin zone

- A CNT is metallic if the "stripes" perpendicular to the circumferential direction intersect the K-points in reciprocal space
- This is geometrically satisfied by the n-m = 3p condition and means that the bands intersect to permit conduction, as in graphite
- Band gap is inversely proportional to diameter, so practically CNTs with >3 nm diameter exhibit metallic behavior at room temperature

Ducastelle, Saito.

K-point (reciprocal lattice point)

Kim.

Periodic Table of Carbon Nanotubes

	zigzag (m=0)						\downarrow		
(n,i d _t (Å) E _g (e T (Å) N	m) (1,0) (2,0) (3,0) $d:d_R$ (1,1) (2,0) (2,0) (3,0) $d:d_R$ (1,1) (2,0) (2,0) (3,0) $d:d_R$ (1,1) (2,0) (3,0) $d:d_R$ (3,0) (3,0) $d:d_R$ (3,0) (3,0) $d:d_R$ (3,0) (3,0) (3,0) $d:d_R$ (3,0)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(6,0) (7,0) (8,7) 70 6:6 5.48 7:7 6.27 0.185 1.087 0.98 24 28 24 24 28 7(1) 7(1) 32	0) 8:8 7.05 9:9 7 0° 4.26 0° 4 (8.1) (9.1)	(10,0) (11,0) .83 10:10 8.62 11 0.827 0.764 .26 0° 4.26 40 (10,1) 44	(12,0) (12,0) (12,0) (11,1) (12,0) (12,1) (12,1) (12,0) (12,1) (12,1)	13,0) 8 13:13 0.663 0 0° 52 (13,1) (14,0) 0.622 4.26 0° 56 (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (14,0) (15,0) (15,0) (15,0) (15,0) (15,0) (15,0) (15,0) (15,0) (15,0) (15,0) (15,0) (15,0) (15,0) (15,0) (15,0) (15,0) (15,0) (15,0) (15,0) (15,0) (15,0) (15,0) (15,0) (15,0) (15,0) (15,0) (15,0) (15,0) (15,0) (15,0) (15,0) (15,0) (15,0) (15,0) (15,0) (15,0) (15,0) (15,0) (15,0) (15,0) (15,0) (15,0) (15,0) (15,0) (15,0) (15,0) (15,0) (15,0) (15,0) (15,0) (15,0) (15,0) (15,0) (15,0) (15,0) (15,0) (15,0) (15,0) (15,0) (15,0) (15,0) (15,0) (15,0) (15,0) (15,0) (15,0) (15,0) (15,0)	(15,0) (16,0) 11,75 15:15 0.030 4.26 0° 4.26	(17,0) 32 17:17 0.523 6 0° 68 (17,1)
	y 1.36 1:3 2.07 1:1 0.0 4.880 2.46 30° 11.28 19.1° 4 28	2.82 1:1 3.59 1:3 4.36 1.839 0.267 2.199 23.74 15.37 13.9° 6.51 10.9° 23.74 52 28 124 124	1:1 5.14 1:1 5.91 1:3 1.166 0.110 0.110 0.173 6.6° 172 76 76 76 76	6.69 1:1 7.47 1.346 0.865 36.42 5.8° 40.67 292 364	1:1 8.25 1:3 9. 0.058 5.2° 14.97 4.7° 49 148	04 1:1 9.82 1: 0.961 0.686 9.16 4.3° 53.42 4.0 532 (11 2)	1 10.60 1:3 11.38 0.036 0.7 9 19.22 3.7° 61.92 244 (12 2)	1:1 12.16 1:1 12.94 1 46 0.568 0.024 0.024 3.4° 66.18 3.2° 23.48 3.0 4 964 (15 364	:3 13.73 1:1 0.608 0° 74.69 2.8° 1228
	a1 2C (2.46	$\begin{array}{c} 2) \\ 2:6 \\ 3.41 \\ 1.975 \\ 30^{\circ} \\ 18.58 \\ 23.4^{\circ} \\ 1.28 \\ 19.75 \\ 11.28 \\ 19.1^{\circ} \\ 19.75 \\ 19.75 \\ 19.78 \\ 19.1^{\circ} \\ 19.78 \\ 19.1^{\circ} \\ 19.75 \\ 1$	(5,2) (6,2) (7,7) 89 1:3 5.65 2:2 6.41 0.114 1.139 1.36 1.36 87 16.1° 15.37 13.9° 34.89 52 104 26 26	1:1 7.18 2:6 0.067 12.2° 6.51 10.9° 4 56	(9,2) .95 1:1 8.72 0.836 0.990 3.26 9.8° 23.74 8 412 248	2:2 9.50 1:3 10.2 0.041 17.23 8.2° 27.9 196	12,2) (13,2) 17 2:2 11.05 1:1 0.665 0.766 0.766 05 7.6° 60.14 7.1° 344 796 796	(14,2) (13,2) 11.83 2:6 0.027 0.553 10.73 6.6° 152 1036	(10,2) 39 2:2 0.623 42 5.8° 584
a2		(3,3) 4.07 3:9 0.0 2.46 30° 25.93 2 12	(5,3) 1:1 5.48 1:1 6.22 3:3 1.269 0.057 5.3° 29.84 21.8° 11.28 19.1° 196 84	(7,3) 6.96 1:1 7.72 0.980 37.89 17.0° 41.99 1 316 388	(9,3) 1:1 8.47 3:3 9. 0.043 5.3° 15.37 13.9° 5 156	(10,3) 24 1:1 10.00 1: 0.744 0.691 0.26 12.7° 54.43 11.7 556 652	(12,3) (13 10.77 3:9 11.54 0.030 0.6 6.51 10.9° 62.80 84 86	(14,3) (15,3) 1:1 12.31 1:1 13.09 3 0:4 0.569 0.021 0.021 10.2° 67.00 9.5° 23.74 8.5 988 372 372 372	(16,3) 13.86 1:1 0.510 9° 75.42 8.4° 1252
Y	metallic semimetallic semiconc tubes tubes tubes	ducting es	(4,4) (5,4) (6, 43 4:12 6.12 1:1 6.83 0.0 33.30 26.3° 18.58	4) (7,4) 2:2 7.56 1:3 8 0.032 13.70 21.1° 1	(8,4) (9,4) .29 4:4 9.04 0.999 0.779 1.28 19.1° 49.16 1	(10,4) (1:1 9.79 2:6 10.5 0.028 8.87 16.1° 57.3	11,4) (12,4) 54 1:1 11.30 4:4 0.788 0.624 15.37 13.9° 724 724 15.37 13.9°	(13,4) 12.06 1:3 0.022 21.88 13.0° 34.89 12.2° 34.89 12.2° 34.89 12.2° 34.89 12.2° 34.89 12.2° 34.89 12.2°	(15,4) 59 1:1 0.523 96 11.5°
		<u> </u>	(5,5) 6.78 5:15 0.0 2.46 30°	(6,5) 7.47 1:1 8.18 1.000 0.976 40.67 27.0° 44.51 2	(8,5) 1:1 8.90 0.020 4.5° 16.14 22.4° 5	(9,5) (104) 63 1:1 10.36 5: 0.749 0.788 2.38 20.6° 11.28 19.1	(11,5) (12 (11,5) (12 (11,11 1:3 11.86 (0.020 0.6 (0.6 (0.6 (0.6) 0.6	53 (13,5) (14,5) 1:1 12.61 1:1 13.36 1 0.649 0.016 16.6° 68.61 15.6° 24.24 14.	(15,5) 1:3 14.12 5:5 0.508 7° 15.37 13.9°
The semi-emp for the semico metallic and s	pirical bandgap Eg is calculated according to H. Yo anducting tubes (no curvature effects) and A. Klein semi-metallic tubes (includes curvature). All other v	rikawa and S. Muramatsu, Phys. Rev. B 52 er and S. Eggert, Phys. Rev. B 63 , 073408 (values are evaluated from the expressions b	2723 (1995) 2001) for the elow.	364 (6,6) 8.14 6:18 0.0 2.46 30° 4	(7,6) (8,6) .83 1:1 9.53 0.853 0.780 .8.04 27.5° 25.93 2.	604 (9,6) 2:2 10.24 3:3 10.9 0.013 18.58 23.4° 29.8	(10,6) 97 2:2 11.70 1:1 0.667 0.623 34 21.8° 63.66 20.4°	6 (12,6) 1036 (13,6) 12.44 6:6 13.18 1:1 13. 0.014 0.550 11.28 19.1° 71.71 18.0° 37.	(14,6) 93 2:2 0.521 89 17.0°
ac-c	carbon-carbon distance		1.421 Å (graphite)	24	508 (7,7) 296	(8,7) 228 (9,7)	³⁹² (10,7) ⁸⁹² (11	,7) 168 (12,7) 1132 (13,7)	632 (14,7)
a	length of unit vector	$\sqrt{3} a_{C-C}$	2.461 Å		9.50 7:21 1	0.18 1:1 10.88 1 0.764 0.688	11.59 1:3 12.31 0.009 0.6	1:1 13.04 1:1 13.77 1 46 0.564 0.011	1:3 14.51 7:7 0.553
a ₁ , a ₂	unit vectors	$\frac{a}{2}(\sqrt{3},1), \frac{a}{2}(\sqrt{3},-1)$	in (x, y) coordinates		2.46 30° 5	676 (9 g) 772		22.7° 70.95 21.4° 24.98 20. 8 1108 412	(12 9) 196
$\mathbf{b_1}, \ \mathbf{b_2}$	reciprocal unit vectors	$\frac{2\pi}{a}(\frac{1}{\sqrt{3}},1), \ \frac{2\pi}{a}(\frac{1}{\sqrt{3}},-1)$	in (x, y) coordinates	T T	Ť	10.86 8:24 11.5	(9,8) (10,8) 54 1:1 12.24 2:2	12.94 1:3 13.66 4:4 14.	38 1:1
Ch	chiral vector	$n\mathbf{a}_1 + m\mathbf{a}_2$	n, m integer			0.0 2.46 30° 62.8	0.658 0.639 80 28.1° 33.30 26.3°	0.007 0.545 23.48 24.8° 18.58 23.4° 78.	0.552 26 22.2°
L	circumference of tube	$L = \mathbf{C}_{\mathbf{h}} = a\sqrt{n^2 + m^2 + nm}$	$0 \le m \le n$		\checkmark	32	868 (9,9) (10	,9) 364 (11,9) 304 (12,9)	1348 (13,9)
d_t	diameter of tube	$d_t = L/\pi$		C.C	1-20		12.21 9:27 12.90 0.0 0.5	1:1 13.59 1:1 14.30 3 90 0.556 0.005	3:3 15.01 1:1 0.498
θ	chiral angle	$\tan\theta = \frac{\sqrt{3m}}{2n+m}$	$0^{\circ} \leq \theta \leq 30^{\circ}$			yra .	2.46 30° 70.18 36 10	28.3° 73.96 26.7° 25.93 25. 84 1204 444	3° 81.67 24.0° 1468
d	highest common divisor of (n, m)		YY	A A A F		1250	\mathbf{Y}	(10,10) (11,10) 13.57 10:30 14.25 1:1 14.	(12,10) 95 2:2
d _R	highest common divisor of $(2n+m, 2m+n)$	$d_R = \begin{cases} d & \text{if } n - m \text{ is not a r} \\ 3d & \text{if } n - m \text{ is a multiplication} \end{cases}$	nultiple of 3d ple of 3d	Charles		ATA		0.0 0.542 2.46 30° 77.56 28.4° 40. 40 1324 (11,11)	0.507 67 27.0° 728 (12,11)
т	translational vector of 1D unit cell	$\mathbf{T} = t_1 \mathbf{a_1} + t_2 \mathbf{a_2}$ $t_1 = (2m+n)/d_R$	t_1, t_2 integer		2.88	A.		14.93 11: 0.0 2.46 3 44	33 15.61 1:1 0.489 0° 84.94 28.6° 1588
Y		$t_2 = -(2n+m)/d_R$	YY	YW	5-2	A bo			Y
T	length of T	$T = \sqrt{3}L/d_R$			22-2	0-0	· · · ·		
N	number of atoms per 1D unit cell	$N = 4(n^2 + m^2 + nm)/d_R$	N/2 = hexagons/unit cell		as-	20		atomis	Stix

Diffusive vs. ballistic transport

(P. Kim, @NT['] 06)

(J. Chen, IBM)

Ballistic SWNT-FETs: Javey et al, Nature 424:654-7, 2003. MWNT ballistic transport: Li et al, Physical Review Letters 95:086601, 2005.

SWNT resistance vs. length

Purewal et al., Phys Rev Lett 98:186808, 2007.

SWNT array transistors

Mixture of metallic and semiconducting SWNTs; contact effects.

FIGURE 1. (a) Schematic illustration of a single-walled carbon nanotube (SWNT) array transistor with an SEM image of a representative array in the frame below. (b) Typical diameter distribution of SWNTs measured by AFM. (c) Equivalent circuit model for a device with channel length L_c, showing the resistances contributed by the inverse of the average conductances of the contacts to the semiconducting and metallic SWNTs (i.e., $1/G_{c.s}$ and $1/G_{c,m}$, respectively) and the role of the SWNTs in transport through the channel (i.e., $L_c/\bar{\sigma}_s$ and $L_c/\bar{\sigma}_m$). The numbers of s-SWNT and m-SWNT are Ns and Nm, respectively. Representative transfer curves of (d) Pd and (e) Au electrode devices with channel width (W) = 400 μ m at V_d = -0.01 V. The channel lengths of the Pd devices are 2.4 \pm 0.1 μ m (black symbols), 3.7 \pm 0.3 μ m (red symbols), 4.4 \pm 0.1 μ m (blue symbols), and 7.5 \pm 0.1 μ m (green symbols) from top to bottom. The channel lengths of the Au devices are 2.9 \pm 0.1 μ m (black symbols), 3.7 \pm 0.1 μ m (red symbols), and 7.6 \pm 0.1 μ m (blue symbols) from top to bottom. The highlighted regions show the range of V_g values that were analyzed. The bottom frames show combinations of L_c and gate voltages at minimum current ($V_{g(min)}$), for (f) Pd and (g) Au devices. The devices that form the focus of the analysis are shown in red. Two other clusters of devices, indicated in blue and green, were also analyzed.

CNT interconnects (Fujitsu)

©2010 | A.J. Hart | 42

CNTs on 300mm wafer

Y. Awano, Fujitsu / many publications

CNT interconnects (Fujitsu)

0.037 µm

