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Announcements	  
§ PS1	  due	  next	  W	  Feb/3	  
§  Some	  material	  is	  yet	  to	  be	  covered	  in	  lecture	  

§ Mostafa’s	  office	  hours	  Th	  4.30-‐6.30,	  1363	  GGB	  
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Energy	  carriers	  
§  Electron	  -‐	  subatomic	  parWcle	  carrying	  a	  
negaWve	  charge	  
	  à	  interac(on	  between	  electrons	  is	  the	  main	  cause	  
of	  chemical	  bonding	  

§  Photon	  -‐	  quantum	  of	  electromagneWc	  field	  
and	  the	  basic	  unit	  of	  light	  

§  Phonon	  –	  a	  quanWzed	  mode	  of	  vibraWon	  in	  a	  
la]ce	  

§  Exciton	  -‐	  a	  “quasiparWcle”,	  a	  bound	  state	  
consisWng	  of	  an	  electron	  and	  a	  hole	  
	  à	  formalism	  for	  transpor(ng	  energy	  without	  
transpor(ng	  net	  charge	  
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Size	  effects	  and	  confinement	  
§ Classical	  size	  effects:	  When	  the	  carrier	  mean	  free	  path	  is	  
comparable	  to	  the	  size	  of	  the	  system	  à	  the	  boundaries	  
become	  important.	  

§ Quantum	  size	  effects:	  When	  the	  carrier	  wavelength	  is	  
comparable	  to	  the	  size	  of	  the	  system	  à	  the	  waves	  
interfere	  in	  a	  coherent	  way,	  causing	  discreWzaWon	  of	  
allowable	  energy	  levels.	  
§  The	  density	  of	  states	  is	  restricted	  
§  The	  band	  structure	  changes	  with	  size	  of	  the	  material	  
§  Due	  to	  aspect	  raWos,	  properWes	  of	  a	  nanostructure	  can	  be	  highly	  

anisotropic	  
§  The	  boundaries	  are	  also	  important	  in	  this	  regime	  
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Ψ	  	  =	  wavefunc(on	  (complex	  func(on	  
of	  posi(on	  and	  (me)	  

|Ψ	  	  |2 =	  probability	  density	  
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Size-‐dependent	  color	  of	  quantum	  dots	  

Frankel,	  Bawendi.	  

1.5	  nm	  

<100>	  CdSe	   <001>	  CdSe	  
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Absorp>on	  and	  emission	  

h?p://www.eviden?ech.com/quantum-‐dots-‐explained/how-‐quantum-‐dots-‐
work.html	  

sWmulus	  

emission	  

1	   2	  

3	   4	  (1)	  
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Idealized	  band	  model	  for	  a	  quantum	  dot,	  
assuming	  strong	  confinement	  

Gaponenko.	  
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As	  size	  increases	  (confinement	  decreases),	  
absorp>on	  approaches	  bulk	  character	  

Alivisatos.	  

D = 3.7 nm  

D = 5.2 nm 
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Examples:	  different	  semiconductor	  crystals	  
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Manufacturing:	  tuning	  op>cal	  
proper>es	  by	  synthesis	  
condi>ons	  

Alivisatos.	  
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Imaging	  with	  quantum	  dots	  
§ Previous	  technology	  =	  fluorescent	  proteins	  
§ New	  technology	  =	  semiconductor	  nanoparWcles	  
§  Narrow	  emission	  peaks	  
§  Size-‐dependent	  emission	  
§  Long	  lifeWme	  (resists	  photobleaching,	  i.e.,	  photochemical	  degradaWon)	  
§  Diverse	  chemical	  linkages	  to	  surfaces	  

§ Typical	  emission	  lifeWmes	  (at	  ∼105	  photons/s)	  
§  Green	  fluorescent	  protein	  =	  0.1-‐1	  s	  
§  Organic	  dye	  =	  1-‐10	  s	  
§  CdSe/ZnS	  quantum	  dot	  =	  105	  s	  

Gao	  et	  al.,	  Nature	  Biotechnology	  22(8):969-‐976,	  2004.	  
h?p://en.wikipedia.org/wiki/Photobleaching	  
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Commercially-‐available	  quantum	  dots	  

h?p://www.eviden?ech.com	  	  
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Quantum	  dot	  LEDs	  

h?p://www.eviden?ech.com	  	  
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Today’s	  agenda	  
§ Dispersion	  relaWons	  and	  carrier	  staWsWcs	  
§ Development	  of	  band	  structure	  
§ Examples:	  
§  Single	  electron	  transistors	  
§  Electrical	  properWes	  of	  CNTs	  
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Today’s	  readings	  
Nominal:	  (on	  ctools)	  
§ Chen,	  SecWon	  3.2	  
§ Rogers,	  Pennathur,	  and	  Adams,	  excerpt	  on	  
Nanoelectronics,	  from	  Understanding	  Small	  Systems	  

§ Avouris,	  “Carbon-‐based	  electronics”	  
	  

Extras:	  (on	  ctools)	  
§  Sheldon	  et	  al.,	  “Enhanced	  semiconductor	  nanocrystal	  
conductance	  via	  soluWon	  grown	  contacts”	  

§ Ho	  et	  al.,	  “Scaling	  properWes	  in	  transistors	  that	  use	  
aligned	  arrays	  of	  single-‐walled	  carbon	  nanotubes”	  
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More	  on	  crystals	  
§ Many	  transport	  properWes	  are	  determined	  by	  periodicity	  
of	  the	  atomic	  la]ce.	  

§ Atomic	  arrangement	  determines	  allowable	  energy	  levels	  
(recall	  from	  QM:	  wave	  modes)	  of	  energy	  carriers.	  

§  In	  the	  literature,	  informaWon	  is	  presented	  in	  reciprocal	  
space.	  
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Figure 3.14 The Brillouin zone and Wigner-Seitz unit cell of a one-dimensional lattice.

way of representation is called the reduced-zone representation. Often, only half of the
band, [0, π/a], needs to be drawn because the band is symmetric for both positive and
negative wavevector values. The relationship between the energy and the wavevector,
as examplified in figure 3.13(b) is the dispersion relation.

We see that at the minimum separation between two energy bands occurs at
km(= sπ/a, s = 0, ±1, ±2, . . . ). What do they km stand for and why do the minimum
separations occur at km? For the one-dimensional lattice being considered with a lattice
constant equal to a, its reciprocal lattice is also one-dimensional with a lattice constant
equal to 2π/a. The Wigner–Seitz cell in the reciprocal lattice, which is the first Brillouin
zone as we explained before, is shown in figure 3.14. The boundaries of this primitive
unit cell in the reciprocal space are at ±π/a. Thus km represents the lattice vectors
constructed using the primitive lattice vector of the Wigner–Seitz cell in the reciprocal
space for the one-dimensional lattice. When we generalize to three-dimensional crystals,
km will be replaced by the reciprocal lattice vector G. In most cases, the energy gap
occurs at the Brillouin zone boundaries, that is, when k = G. This is not a coincidence
since it results from the interference effects of electrons in periodic structures. This
mechanism is not very different from the observation of diffraction peaks by X-ray and
electron beams that we discussed in section 3.1.4. We also plotted the energy dispersion
of a free electron in the reduced-zone representation in figure 3.13, which does not show
an energy jump at km but is otherwise similar to that of an electron inside the periodic
potential. The main effect of the periodic potential is to modify the band structure
near km, as a result of the diffraction of the electron waves. More discussion on wave
interference will be given in chapter 5.

We now determine the value of the wavevector k in the Bloch theorem, using the
Born–von Karman periodic boundary condition. This boundary condition deals with
the end points of a crystal. Ordinarily, we would think that the two end points are
different from the internal points. For many applications, however, it is not necessary
to distinguish the boundary points from the internal points, because a crystal usually
has a tremendous number of lattice points (this is not true for quantum wells, quantum
wires, and quantum dots). The Born–von Karman boundary condition requires that the
wave functions at the two end points be equal to each other; that is, the two end points
[points 1 and N + 1 in figure 3.15(a)] are overlapped to form a lattice loop as shown in
figure 3.15(b),

"[x + N(a + b)] = "(x) (3.33)

	  
Chen.	  
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Real	  space	  vs.	  reciprocal	  space	  la[ces	  in	  3D	  

	  
Chen.	  
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Dispersion	  rela>ons	  

§ Dispersion	  rela>on:	  the	  relaWonship	  
between	  energy	  and	  momentum	  
(frequency	  and	  wave-‐vector)	  

§  Light	  in	  vacuum:	  

§  In	  real	  materials,	  dispersion	  relaWons	  for	  
electrons,	  phonons,	  photons,	  etc.	  are	  
complicated:	  frequency	  a	  more	  complex	  
funcWon	  of	  wavelength	  

	  

h?p://en.wikipedia.org/wiki/Dispersion_relaWon	  
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Electrons	  in	  a	  periodic	  system	  
	  
The	  "free"	  electron	  

52 NANOSCALE ENERGY TRANSPORT AND CONVERSION

the quantum world. Because h̄ is a very small number, the uncertainty represented by
eq. (2.29) for a macroscopic object is very small. For example, if we decide that an object
with a momentum of 1 kgms−1 has an uncertainty of 10−10 kgms−1, the correspond-
ing uncertainty in determining its position is ∼ 10−24 m, a negligible quantity. This
uncertainty, however, becomes quite appreciable for small particles such as electrons.

For our further use, we need also to have an expression for the flux of the matter
being considered. This can be obtained by (1) first multiplying the Schrödinger equa-
tion, (2.16), by !∗

t , (2) taking the complex conjugate of the Schrödinger equation and
multiplying the obtained equation by !t , and (3) subtracting the two resulting equations,
which leads to

∂ |!t |2
∂t

+ ∇ • J = 0 (2.30)

where J is

J = ih̄

2m
(!t∇!∗

t − !∗
t ∇!t ) (2.31)

Since the first term in eq. (2.30) is the rate of the change of the probability of finding
the matter at each location, the second term in eq. (2.30) must be the net rate of matter
flowing out of the point. Equation (2.30) is the particle conservation equation and Jm−2g
is understood as the current density (or flux) of the material wave.

The wavefunction concept is difficult concept to grasp at first sight and this is not
strange, since even Schrödinger himself was not able to explain the meaning of the
wavefunction. However, Schrödinger was successful in using the equation to show that
the energy states of electrons are quantized, as we will see later. Born’s explanation of
the wavefunction products !t!

∗
t as a probability density of matter implies that material

particles have spatial extent with some ambiguity, as we will see from the example
solutions of the Schrödinger equation.

2.3 Example Solutions of the Schrödinger Equation

In this section, we will give some solutions to the Schrödinger equation for several
important cases that we will use later.

2.3.1 Free Particles

A free particle is one that it is not subject to any potential constraints; that is, U = 0.
We can think of this free particle as a free electron. For the particle traveling along the
x-direction, eq. (2.27) becomes

− h̄2

2m

d2!

dx2 − E! = 0 (2.32)

The solution of the above equation is

!(x) = A • exp(−ikx) + B • exp(ikx) (2.33)
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Schrodinger	  equaWon:	  

Parabolic	  dispersion	  

A	  periodic	  poten>al	  
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sample at a fixed direction, and the diffracted X-ray is measured by a fixed detector;
refer to figure 3.10(a). The crystal is rotated to change the angle of incidence θ

Figure 3.10(b) with in to a special crystal When the Bragg condition is not satisfied,
the detector will register very little signal. But when crystals are rotated to the
positions where the Bragg condition, eq. (3.17), is satisfied, the detector will register
a peak. A typical scan curve is shown in figure 3.9(a). Different peaks correspond to
different crystal planes. For an X-ray of wavelength 1 Å and a first-order diffraction
peak at θ = 30◦, the corresponding spacing between the two crystal planes is

a = 1Å
2 sin 30◦ = 1Å

3.2 Electron Energy States in Crystals

In the previous chapter, we discussed the energy levels of single atoms and harmonic
oscillators. These energy levels are typically discrete. In solids, the wavefunctions of
closely spaced atoms begin to overlap and form new wavefunctions and, correspondingly,
new energy levels. We will see that the energy levels become more continuous than those
of individual atoms. This trend can be thought of as the result of the broadening of the
energy levels of individual atoms to avoid the overlapping of wavefunctions because,
according to the Pauli exclusion principle, each quantum state can have only a maximum
of one electron. In crystals, the most fundamental characteristic is the periodicity of the
lattice. Such periodicity brings in many new features to the allowable energy levels of
electrons as well as phonons. In this section, we will start from a simple one-dimensional
model to examine the effect of periodicity on the electronic energy levels and then extend
the discussion to three-dimensional crystals.

3.2.1 One-Dimensional Periodic Potential (Kronig–Penney Model)

Let’s consider a simple one-dimensional lattice. The potential field is a periodic function,
as sketched in figure 3.11(a). At the location of each ion, the electrons are attracted by
the ion and have the lowest potential. As an approximation to the actual atomic potential
distribution in a crystal a in figure 3, we consider a square periodic potential as shown
in figure 3.11(b) and want to find out the energy levels, assuming there is only one
electron inside such a periodic potential. As in the case that the hydrogen energy level
can be used to explain the periodic table, the existence of many electrons in a crystal
does not change the main picture obtained from the one-electron assumption. This

Figure 3.11One-dimensional periodic potential model: (a) sketch of atomic potential; (b) Kronig-
Penney model.

	  
Chen.	  
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Conductors	  vs.	  insulators	  

86 NANOSCALE ENERGY TRANSPORT AND CONVERSION

In ionic crystals, such as NaCl, the single valence electron in the sodium atom
moves to the chlorine atom so that both Na+ and Cl− have closed electron shells
but, meanwhile, become charged. The Coulomb potential among the ions becomes
the major attractive force. The potential energy of any ion i in the presence of other ions
j is then

Ui,A =
∑

i=/ j

±q2

4πε0rij
= − αq2

4πε0r0
(3.8)

where q is the charge per ion, ε0 the dielectric permittivity of free space, and r0 the
nearest-neighbor separation. The parameter α is called the Madelung constant and is
related to the crystal structure. This attractive potential, combined with an appropriate
repulsive potential, constitutes the total potential energy in ionic crystals.

Covalent bonds are formed when electrons from neighboring atoms share common
orbitals, rather than being attached to individual ions as in ionic crystals. Biological
molecules are often formed through covalent bonding. Many inorganic systems are also
covalently bonded, such as the H2 molecule. The electron in each hydrogen atom of an H2
molecule shares a common orbital (one spin-up and the other spin down) with the other
electron in the other H atom. The covalent bond is strongly directional. In the case of the
H2 molecule, the bond is oriented along the line of the two nuclei. Diamond, silicon, and
germanium are all covalent crystals. Each atom has four electrons in the outer shell and
forms a tetrahedral system of covalent bonds with four neighboring atoms, as indicated
in figure 3.5(a). In certain crystals, such as GaAs, both covalent and ionic bonding are
important. Fundamentally, the covalent bonding force is also due to charge interaction.
However, unlike the van der Waals force in molecular crystals or the electrostatic force
in ionic crystals, it is more difficult to construct simple expressions for covalent crystals.
Empirical potentials have been developed, such as the Stillinger–Weber potential for
silicon (Stillinger and Weber, 1985). Expressions for various empirical potentials will
be presented in chapter 10.

In covalent bonds, electrons are preferentially concentrated in regions connecting the
nuclei, leaving some regions in the crystal with low charge concentration, as illustrated
in figure 3.7(a). Metals and their associated metallic bonds can be considered an extreme
case of covalent bonds, in which the bonds begin to overlap and all regions of the crystal
become filled up with charges [figure 3.7(b)]. In the case of total filling of the empty
space, it becomes impossible to tell which electron belongs to which atom. One can
imagine the entire crystal as one big molecule with the electrons shared amongst all

Figure 3.7 Distribution of electrons (gray area) in (a) a covalent bonding crystal and (b) a metallic
bonding crystal (after Ashcroft and Mermin, 1970).

	  
Chen,	  chapter	  3.	  
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Electrons	  in	  a	  periodic	  system	  
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sample at a fixed direction, and the diffracted X-ray is measured by a fixed detector;
refer to figure 3.10(a). The crystal is rotated to change the angle of incidence θ

Figure 3.10(b) with in to a special crystal When the Bragg condition is not satisfied,
the detector will register very little signal. But when crystals are rotated to the
positions where the Bragg condition, eq. (3.17), is satisfied, the detector will register
a peak. A typical scan curve is shown in figure 3.9(a). Different peaks correspond to
different crystal planes. For an X-ray of wavelength 1 Å and a first-order diffraction
peak at θ = 30◦, the corresponding spacing between the two crystal planes is

a = 1Å
2 sin 30◦ = 1Å

3.2 Electron Energy States in Crystals

In the previous chapter, we discussed the energy levels of single atoms and harmonic
oscillators. These energy levels are typically discrete. In solids, the wavefunctions of
closely spaced atoms begin to overlap and form new wavefunctions and, correspondingly,
new energy levels. We will see that the energy levels become more continuous than those
of individual atoms. This trend can be thought of as the result of the broadening of the
energy levels of individual atoms to avoid the overlapping of wavefunctions because,
according to the Pauli exclusion principle, each quantum state can have only a maximum
of one electron. In crystals, the most fundamental characteristic is the periodicity of the
lattice. Such periodicity brings in many new features to the allowable energy levels of
electrons as well as phonons. In this section, we will start from a simple one-dimensional
model to examine the effect of periodicity on the electronic energy levels and then extend
the discussion to three-dimensional crystals.

3.2.1 One-Dimensional Periodic Potential (Kronig–Penney Model)

Let’s consider a simple one-dimensional lattice. The potential field is a periodic function,
as sketched in figure 3.11(a). At the location of each ion, the electrons are attracted by
the ion and have the lowest potential. As an approximation to the actual atomic potential
distribution in a crystal a in figure 3, we consider a square periodic potential as shown
in figure 3.11(b) and want to find out the energy levels, assuming there is only one
electron inside such a periodic potential. As in the case that the hydrogen energy level
can be used to explain the periodic table, the existence of many electrons in a crystal
does not change the main picture obtained from the one-electron assumption. This

Figure 3.11One-dimensional periodic potential model: (a) sketch of atomic potential; (b) Kronig-
Penney model.
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one-electron, rectangular periodic potential model is called the Kronig–Penney model.
The Schrödinger equation is then

− h̄2

2m

d2!

dx2 + (U − E)! = 0 (3.19)

The potential distribution U(x) is given by

U(x) =
{

0 0 < x ≤ a

U0 −b < x ≤ 0
(3.20)

subject to the following periodicity requirement

U(x + a + b) = U(x) (3.21)

Solutions for eq. (3.19) are

! = AeiKx + Be−iKx(0 < x ≤ a) (3.22)

! = CeQx + De−Qx(−b ≤ x ≤ 0) (3.23)

where

E = h̄K2

2m
and U0 − E = h̄2Q2

2m
(3.24)

and K and Q are to be determined, from which the eigen energy E of the electron inside
such a periodic potential is to be extracted.

Four boundary conditions are needed to determine the unknown coefficients A, B, C,
and D. We can use the continuity of the wavefunction and its derivative at x = 0,
which gives

A + B = C + D (3.25)

iK(A − B) = Q(C − D) (3.26)

Two more boundary conditions are necessary to determine the four unknown coefficients.
We can consider the continuity of the wavefunction and its derivative at x = a, but this
requires that we know the wavefunction in a < x ≤ a + b. The wavefunction in this
region can be related to that in the region −b < x < a because the potential is periodic.
Due to the periodicity in the potential, the wavefunction at any two points separated by
a lattice vector is related through the Bloch theorem,

!(r + R) = !(r) exp(ik • R) (3.27)

where R is a lattice vector and k is the wavevector of the crystal. The Bloch theorem
implies that the wavefunction values at two equivalent points (r and r + R) inside a
crystal differ by only a phase factor exp(ik • R)and that we need to know only the
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one-electron, rectangular periodic potential model is called the Kronig–Penney model.
The Schrödinger equation is then

− h̄2

2m

d2!

dx2 + (U − E)! = 0 (3.19)

The potential distribution U(x) is given by

U(x) =
{

0 0 < x ≤ a

U0 −b < x ≤ 0
(3.20)

subject to the following periodicity requirement

U(x + a + b) = U(x) (3.21)

Solutions for eq. (3.19) are

! = AeiKx + Be−iKx(0 < x ≤ a) (3.22)

! = CeQx + De−Qx(−b ≤ x ≤ 0) (3.23)

where

E = h̄K2

2m
and U0 − E = h̄2Q2

2m
(3.24)

and K and Q are to be determined, from which the eigen energy E of the electron inside
such a periodic potential is to be extracted.

Four boundary conditions are needed to determine the unknown coefficients A, B, C,
and D. We can use the continuity of the wavefunction and its derivative at x = 0,
which gives

A + B = C + D (3.25)

iK(A − B) = Q(C − D) (3.26)

Two more boundary conditions are necessary to determine the four unknown coefficients.
We can consider the continuity of the wavefunction and its derivative at x = a, but this
requires that we know the wavefunction in a < x ≤ a + b. The wavefunction in this
region can be related to that in the region −b < x < a because the potential is periodic.
Due to the periodicity in the potential, the wavefunction at any two points separated by
a lattice vector is related through the Bloch theorem,

!(r + R) = !(r) exp(ik • R) (3.27)

where R is a lattice vector and k is the wavevector of the crystal. The Bloch theorem
implies that the wavefunction values at two equivalent points (r and r + R) inside a
crystal differ by only a phase factor exp(ik • R)and that we need to know only the
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wavefunction inside one unit cell. For the one-dimensional problem being considered,
eq. (3.27) is

![x + (a + b)] = !(x) exp[ik(a + b)] (3.28)

We should distinguish the wavevector k from the propagation vector of the solution, K

in eq. (3.22). The latter contains the energy of the electrons that we want to find. We will
explain later, in more detail, the meaning of wavevector k. We want to find a relation
between k and E, which is equivalent to a relation between k and K .

From Bloch’s theorem, we know that if the wavefunction for −b < x < 0 is given
by eq. (3.23), the wavefunction for a < x < a + b is that given by eq. (3.23) multiplied
by exp[ik(a + b)]. The continuity requirements for the wavefunction and its derivative
at x = a are then

AeiKa + B−iKa
e = (Ce−Qb + DeQb) exp[ik(a + b)] (3.29)

iK(AeiKa − B−iKa
e ) = Q(Ce−Qb − DeQb) exp[ik(a + b)] (3.30)

Now we have four equations, eqs. (3.25), (3.26), (3.29), (3.30), and four unknowns,
A, B, C, D. Examining these equations indicates that this is a set of linear homogeneous
equations and is thus again an eigenvalue problem, and a solution exists only when the
determinant of the coefficients A, B, C, and D equals zero. From this condition, we
arrive at the following equation

Q2 − K2

2KQ
sinh(Qb) sin(Ka) + cosh(Qb) cos(Ka) = cos[k(a + b)] (3.31)

where “sinh(x)” and “cosh(x)” are hyperbolic sine and cosine functions. For a given
wavevector k, the only unknown in the above equation is the electron energy E, which
is embedded in both K and Q. Thus the above equation can be used to determine a
relationship between E and k. To get a better idea of what the solution looks like, let’s
assume b → 0 and U0 → ∞, but keep Q2ba/2(= P) equal to a constant. Under this
approximation, sinh(Qb) ≈ Qb, and cosh(Qb) ≈ 1. Equation (3.31) reduces to

P

Ka
sin Ka + cos Ka = cos ka (3.32)

We can solve the above equation for (Ka) as a variable as a function of (ka) and
use eq. (3.24) to find out allowable energy E from K . One important observation is
that the magnitude of the left-hand side of eq. (3.32) can be larger than 1 whereas the
right-hand side cannot. Therefore, the equation has no solution for those values of K

(and thus energy) where the absolute values of the left-hand side are larger than one.
A graphical representation of the left-hand side is shown in figure 3.12, where the right-
hand side is bounded within [−1, 1]. In the shaded region, there is no solution for K , and
thus no electrons with energies corresponding to such K values exist. We can convert
the solution for K into energy, and redraw the graph as a function of ka as shown in
figure 3.13(a). The figure shows that, for each wavevector k, there are multiple values
for the electron energy E.

Bloch theorem: 

	  
Chen,	  chapter	  3.	  
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Dispersion	  rela>on	  -‐>	  energy	  gaps	  

§ Wave	  effects	  leads	  to	  certain	  energies	  (frequencies)	  
that	  are	  forbidden:	  band	  gaps	  
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Figure 3.12 Left-hand side of eq. (3.32) as a function of Ka/π. Because the right-hand side
is always less than or equal to one, there are regions (the shaded area) where no solution for
Ka/π exists, and thus no electrons exist with energy corresponding to the values of K in this
region.

The electron energy forms quasi-continuous bands (because k itself is quasi-
continuous) separated from each other by a minimum gap that occurs at ka = sπ

(s = 0, ±1, ±2, . . . ), or k = sπ/a, at which the right-hand side of eq. (3.32) is ±1.
Figure 3.13(a) implies that there are multiple values of k for each energy E. However,
the Bloch theorem, eq. (3.28), says that wavefunctions correspond to the wavevectors
k separated by m(2π/a) (since b = 0) are identical, they are the same quantum state
and should be counted only once. Thus, rather than plotting the energy eigenvalues for
all the wavevectors, we can plot them in one period, as shown in figure 3.13(b). This

Figure 3.13 Electron energy as a function of its wavevector: (a) extended zone representation;
(b) reduced zone representation. Dashed lines are free electron energy levels. Solid lines from
Kronig-Penney model.

	  
Chen,	  chapter	  3.	  
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Some	  band	  diagrams	  of	  real	  materials	  
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Figure 3.17 Electron band structures of (a) copper (Mattheiss, 1964), (b) silicon, and (c) GaAs
(Si and GaAs from Chelikowsky and Cohen, 1976). Copper is a metal because the Fermi level falls
inside the bands. The Fermi level for Si and GaAs at zero temperature is at the top of the valence
band (E = 0). Silicon is an indirect gap semiconductor since the minimum of the conduction
band and that of the valence band are not at the same wavevector location. GaAs is a direct
gap semiconductor because the minima occur at the same wavevector (k = 0 for this case). All
bandgaps values are those at 300 K.

gap exists in which no electrons are allowed at T = 0 K. The values and locations of
the energy gap are different for dissimilar crystallographic directions, and the absolute
minimum gap is called the bandgap. GaAs is a direct gap semiconductor because the
minima of the conduction and the valence bands occur at the same wavevector. Si is an
indirect gap semiconductor because the two minima do not occur at the same wavevector.
Direct and indirect gap semiconductors have major differences in their optical properties.
Direct bandgap semiconductors are more efficient photon emitters, semiconductor lasers
are made of direct gap semiconductors such as GaAs, whereas most electronic devices
are built on silicon technology.

For semiconductors, since most electrons are close to the minimum of the conduction
band and holes are close to the minimum of the valence band, it is convenient to express
the band structure near the minima in analytical form. Since the minima typically mean
that the first-order derivative, ∂E/∂k, is zero (as long as the first-order derivative exists),
the second-order terms often are used. For the conduction band, the expansion of the
electron allowable energy level near the minimum is often written in the form

E − Ec = h̄2

2

(
k2
x

m11
+

k2
y

m22
+ k2

z

m33

)

(3.37)

where

mij = h̄2

(∂2E/∂ki∂kj )(∂2E/∂ki∂kj )
(3.38)

Plo]ed	  along	  direc>ons	  of	  high	  symmetry	  

	  
Chen,	  chapter	  3.	  
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Carrier	  sta>s>cs	  
§ The	  occupa>on	  func>on,	  f(E):	  Expected	  number	  of	  
carriers	  with	  a	  given	  energy	  

§ This	  is	  determined	  by	  staWsWcal	  physics	  and	  carrier	  
interacWons,	  i.e.	  Pauli	  exclusion	  

§ Bosons	  (Photons,	  phonons):	  

§  Fermions	  (Electrons,	  holes):	  

§ µ	  is	  called	  the	  chemical	  poten>al.	  It's	  where	  
occupancy	  is	  ½.	  At	  T	  =	  0	  K,	  µ	  is	  called	  the	  Fermi	  
Energy	  and	  is	  the	  highest	  filled	  energy	  state	  
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Carrier	  sta>s>cs	  

The	  actual	  number	  of	  carriers	  in	  a	  state,	  per	  unit	  
volume	  and	  energy:	  	  
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Metal,	  semiconductor,	  insulator	  

a	  pracWcal	  semiconductor	  has	  ≈3	  eV	  band	  gap	  

h?p://en.wikipedia.org/wiki/Valence_band	  
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Fermi	  energy	  

	  
Rogers,	  	  Pennathur,	  Adams.	  
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Fermi	  energy	  

	  
Rogers,	  	  Pennathur,	  Adams.	  
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Metal,	  semiconductor,	  insulator	  

	  
Chen,	  chapter	  3.	  
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Figure 3.16 Explanation of metals, insulators, and semiconductors based on the one-dimensional
band structure. (a) Electrons in metal partially fill a band. The top-most level (Ef ) is called the
Fermi level. (b) Electrons fill to the top of the band. When the energy gap Eg is large, no electrons
can be excited to the next higher energy band and the material is an electrical insulator. (c) When
the energy gap Eg is relatively small, some electrons can be thermally excited to the next higher
energy band (called the conduction band), leaving the same number of empty states (holes) in the
valence band. The material is an intrinsic semiconductor. (d) Impurities (more commonly called
dopants) may have an energy level close to that of the conduction band. Electrons can be excited
from the impurities and fall into the conduction band, resulting in more electrons than holes. Such
a semiconductor is called an n-type semiconductor and the dopants are called donors. (e) When
the impurity energy levels are close to the valence band, electrons are excited from the valence
band into the impurity level, leaving more holes behind. Such semiconductors are called p-type
and the impurities are called acceptors.

still the mean free path of an electron can be as long as thousands of angstroms, and
the number of atoms in a cube on the order of one mean free path is enormous, ∼106

to ∼108 atoms. It is amazing that an electron can zigzag through these atoms without
getting scattered. Because of this behavior, we often treat electrons as a gas and neglect
the ions completely, except when considering their occasional scattering effect.

Although the above solution is valid only for one electron, the existence of multiple
electrons does not affect the qualitative picture of the energy bands, as long as the
Coulomb potential between electrons is small compared to the potentials between elec-
trons and ions. With such a simple picture of the energy bands, we can begin to understand
the difference between insulators, metals, and semiconductors. In the first Brillouin zone,
there are N allowable wavevectors for a lattice chain with N lattice points. Because each
wavevector represents a wavefunction and each wavefunction can have a maximum of
two electrons with different spins, each band can have a maximum of 2N electrons
for a one-dimensional lattice. At zero temperature, the filling rule for the electrons is
that they always fill the lowest energy level first, as required by thermodynamics. For
alkali metals and noble metals that have one valence (free) electron per primitive cell,
the band is only half filled since there are only N valence electrons in this case, as
shown in figure 3.16(a). The topmost energy level that is filled with electrons at zero
kelvin is called the Fermi level. The electron energy and momentum can be changed
(almost) continuously within the same band because the separation between successive
energy levels is small. Thus, these electrons can flow freely, making the materials good

a	  pracWcal	  semiconductor	  has	  ≈3	  eV	  band	  gap	  
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Band	  forma>on	  from	  atoms	  
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Single	  electron	  transistor	  (SET)	  

	  
Rogers,	  	  Pennathur,	  Adams.	  
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Single	  electron	  transistor	  

	  
Rogers,	  	  Pennathur,	  Adams.	  
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CNT	  la[ce	  and	  unit	  cell	  

Charlier	  et	  al.,	  Review	  of	  Modern	  Physics	  79(2),	  2007.	  	  
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“Closing”	  a	  CNT:	  forced	  periodicity	  
§  Like	  the	  0D	  quantum	  well,	  the	  geometric	  constraint	  of	  a	  
seamless	  CNT	  forces	  periodicity	  on	  the	  wavefuncWon	  in	  
the	  circumferenWal	  direcWon.	  
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Boundary	  condi>on	  in	  reciprocal	  space	  

§ A	  CNT	  is	  metallic	  if	  the	  “stripes”	  perpendicular	  to	  the	  circumferenWal	  
direcWon	  intersect	  the	  K-‐points	  in	  reciprocal	  space	  

§ This	  is	  geometrically	  saWsfied	  by	  the	  n-‐m	  =	  3p	  condiWon	  and	  means	  
that	  the	  bands	  intersect	  to	  permit	  conducWon,	  as	  in	  graphite	  

§ Band	  gap	  is	  inversely	  proporWonal	  to	  diameter,	  so	  pracWcally	  CNTs	  
with	  >3	  nm	  diameter	  exhibit	  metallic	  behavior	  at	  room	  temperature	  

pCk π2=⋅
p	  =	  integer	  
k	  =	  parallel	  to	  C	  

Ducastelle,	  Saito.	  

=	  
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K-‐point	  
(reciprocal	  la]ce	  point)	  
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Diffusive	  vs.	  ballis>c	  transport	  

(J.	  Chen,	  IBM)	  

Diffusive	  transport	  

BallisWc	  transport	  

le	  <<	  L	  

L	  <	  le	  

R(L)	  =	  rL	  

R(L)	  =	  h/(Ne2)	  =	  RQ	  
(P.	  Kim,	  @NT’06)	  

BallisWc	  SWNT-‐FETs:	  Javey	  et	  al,	  Nature	  424:654-‐7,	  2003.	  
MWNT	  ballisWc	  transport:	  Li	  et	  al,	  Physical	  Review	  Le?ers	  95:086601,	  2005.	  
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SWNT	  resistance	  vs.	  length	  

Purewal	  et	  al.,	  Phys	  Rev	  Le?	  98:186808,	  2007.	  
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SWNT	  array	  transistors	  
§ Mixture	  of	  metallic	  and	  semiconducWng	  SWNTs;	  contact	  
effects.	  

Ho	  et	  al.,	  Nano	  Le?ers	  (ASAP),	  2010.	  
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CNT	  interconnects	  (Fujitsu)	  

CNTs	  on	  300mm	  wafer	  

Y.	  Awano,	  Fujitsu	  /	  many	  publicaWons	  
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CNT	  interconnects	  (Fujitsu)	  

Y.	  Awano,	  Fujitsu	  /	  many	  publicaWons	  


