Nanomanufacturing University of Michigan ME599-002 | Winter 2010

10: Electrostatics in solution

February 15, 2010

John Hart ajohnh@umich.edu http://www.umich.edu/~ajohnh

Announcements

- Video assignment discussion/questions
 - Example: <u>http://vimeo.com/3315489</u>
- PS2 due next Monday (Feb/22)

Recap: small-scale flows

- Wall friction grows nonlinearly as flow scale (e.g., pipe diameter) decreases
- However, when wall friction dominates, we must consider the nature of molecule-wall interactions, called slip
- We define flow regimes by Knudsen number,

 $Kn = \lambda / L_o$ Gases, I = mean free path

 $Kn = b / L_o$ Liquids, b = slip length

We can superimpose slip upon a no-slip model

What's the molecular origin of slip?

- Fluid-fluid interactions are stronger than fluid-wall interactions (e.g., hydrophobicity).
- Surface roughness traps gas molecules dissolved in the liquid, creating a lubrication layer at the wall. Here, what happens at high Re?
- Molecules "hop" between minimum-energy sites in the wall lattice; therefore slip is a rate process and slip length depends on temperature.

Measuring gas flows in microchannels

Arkilic et al., J MEMS 6(2):167, 1997.

Arkilic et al., J MEMS 6(2):167, 1997.

Fig. 10. Helium mass flow for 1.33- μ m channel (95% confidence intervals indicated). The solid curve is the solution to (21), assuming full tangential momentum accommodation, and the dashed curve is the solution to (21) setting K = 0 (no-slip solution).

Arkilic et al., J MEMS 6(2):167, 1997.

Flow through CNTs

Fig. 1. (A) Schematic of the fabrication process. Step 1: microscale pit formation (by KOH etching). Step 2: catalyst deposition/annealing. Step 3: nanotube growth. Step 4: gap filling with low-pressure chemical vapor-deposited Si_3N_4 . Step 5: membrane area definition (by XeF₂ isotropic Si etching). Step 6: silicon nitride etch to expose nanotubes and remove catalyst nanoparticles (by Ar ion milling); the membrane is still impermeable at this step. Step 7: nanotube uncapping (reactive ion etching); the membrane begins to exhibit gas permeability at this step. (B) SEM cross section of the as-grown DWNTs (CNTs). (C) SEM cross section of the membrane areas; inset shows a close-up of one membrane. (E) Photograph of the open membrane areas; each window; each window is 50 μ m in diameter.

Holt et al., Science 312:1034-1037, 2006.

Flow through CNTs

Fig. 4. Air (red) and water (blue) permeability as measured for three DWNT membranes (DW#1, 2, and 3) and a polycarbonate membrane (PC). Despite considerably smaller pore sizes, the permeabilities for all DWNT membranes greatly exceed those of the polycarbonate membrane.

Membrane	Pore diameter (nm)	Pore density (cm ⁻²)	Thickness (µm)	Enhancement over Knudsen model* (minimum)	Enhancement over no-slip, hydrodynamic flow† (minimum)	Calculated minimum slip length‡ (nm)
DWNT 1	1.3 to 2.0	\leq 0.25 \times 10 ¹²	2.0	40 to 120	1500 to 8400	380 to 1400
DWNT 2	1.3 to 2.0	≤0.25 × 10 ¹²	3.0	20 to 80	680 to 3800	170 to 600
DWNT 3	1.3 to 2.0	≤0.25 × 10 ¹²	2.8	16 to 60	560 to 3100	140 to 500
Polycarbonate	15	6×10^8	6.0	2.1	3.7	5.1
*From (18). +Fr	om (26). ±From (29	Ŋ.				

Holt et al., Science 312:1034-1037, 2006.

Extreme slip flow through CNTs

Table I Pressure-driven flow through aligned MWCN I membrane								
Liquid	Initial permeability*	0	bserved flow velocity†		Expected flow velocity†	S	lip leng (mm)	th
Water	0.58		25		0.00057		54	
	1.01		43.9		0.00057		68	
	0.72		9.5		0.00015		39	
Ethanol	0.35		4.5		0.00014		28	
iso-Propanol	0.088		1.12		0.00077		13	
Hexane	0.44		5.6		0.00052		9.5	
Decane	0.053		0.67		0.00017		3.4	

defining floor the second allowed ANA/CNIT we see here a

MWCNT, multiwalled carbon nanotube. For details of methods, see supplementary information. *Units, $cm^3 per cm^2 min bar$. †Flow velocities in $cm s^{-1} at 1 bar$. Expected flow velocity is that predicted from conventional flow.

Importance of gas damping in MEMS: DMD micromirrors

Mirror dynamics at various ambient pressures

FIGURE 7.2. Dynamic response of the DMD^{TM} mirrors subject to a step pulse under various air pressures. (The data were obtained by Dr. Larry Hornbeck (1988); Courtesy of Texas Instruments)

Karniadakis and Beskok.

Today's agenda

- How surfaces become charged in solution
- Modeling the electrical "double layer"
- Competition between electrostatic repulsion and VDW attraction forces (DLVO theory) → stability vs. coagulation
- Nanofluidic transistors
- Electrophoresis

Today's readings (ctools)

Nominal:

- Hiemenz and Rajagopalan, excerpt on "The electrical double layer and double-layer interactions", from <u>Principles of Colloid and Surface Chemistry</u>
- Karnik et al., "Electrostatic control of ions and molecules in nanofluidic transistors"

Extras:

- Israelachvili, excerpt on "Electrostatic forces between surfaces in liquids", from <u>Intermolecular and Surface</u> <u>Forces</u>
 - \rightarrow same topics as Hiemenz above
- Bouzigues et al., "Nanofluidics in the Debye layer at hydrophilic and hydrophobic surfaces"
 - \rightarrow measurements of slip length on charged surfaces

Surfaces become charged in solution –WHY?

- Ionization or dissociation of surface groups, e.g., -COOH → -COO⁻ + H⁺
- Adsorption of ions from solution

- → Charged surfaces are balanced by counterions in solution, so electrical neutrality is preserved
- → Some counterions adsorb to the surface, and others are distributed near the surface within the **double layer**
- → This is very important for interactions between nanostructures in solution

Ion concentration profiles

Counterions (cations)

Israelachvili, Mulvaney.

D

97 **m**ii

Polsson (Boltzman egn. $\frac{d^2 \psi}{dx^2} = \frac{-e}{\varepsilon} \xi \xi_i^{n_{i,\infty}} exp \left\{ \frac{-2ie\chi}{k_b T} \right\}$

 $z_i e \psi \ll k_j T$ $\frac{k_j T}{e} e^{29ek}$ = 25.7 MV "Ion surface potential"

 $\frac{d^{2} \psi}{dx^{2}} = \left(\left(\frac{e^{2}}{zk_{b}T} \right) \leq z_{i}^{2} n_{i,o} \right) \psi$ $K^{-1} \quad Debye \quad lage$ $<math display="block">K^{-1} \quad debye \quad lage$ $\\K^{-1} \quad debye \quad lage$

$$K^{-1} = 3.04 \text{ AM.}^{1}$$

$$K^{-1} = 3.04 \text{ AM.}^{1}$$

$$Vn \cdot t \quad conversion.$$

$$n^{1} = 1000 \text{ M}_{1} \text{ NA}$$

$$\frac{1}{1000} = \left(\frac{1}{M}\right) \left(\frac{100}{L}\right) \left(\frac{1000}{L} + \frac{2}{M}\right) \left(\frac{1000}{L} + \frac{2}{M}\right)$$

$$K = \left[\left(\frac{1000}{L} + \frac{2}{M}\right) \left(\frac{1000}{L} + \frac{2}{M}\right) \left(\frac{1000}{L} + \frac{2}{M}\right)\right]^{1/2}$$

Statement of the local division of the local

Effect of electrolyte concentration and valence (Debye-Huckel approximation)

Hiemenz and Rajagopalan.

Comparison of double layer models

100

Hiemenz and Rajagopalan.

Limiting solutions for small (spherical) and large (locally planar) particles

TABLE 5.1 Solutions to the Poisson-Boltzmann equation for microparticles and nanoparticles

	Small <i>ka</i>	Large ka
Low potentials	$\psi(r) = \psi_0 \frac{a}{r} \exp[-\kappa(r-a)]$	$\psi(x) = \psi_0 \exp(-\kappa x)$
High potentials	$\nabla^2 \psi = \frac{2zn^\infty e}{\varepsilon_{\rm r}\varepsilon_0} \sinh\left(\frac{e\psi}{kT}\right)$	$\tanh\left(\frac{ze\psi(x)}{4kT}\right) = \tanh\left(\frac{ze\psi_0}{4kT}\right)\exp(-\kappa x)$
	where $\kappa^2 = \frac{2z^2 e^2 n^\infty}{\varepsilon_r \varepsilon_0 kT}$	

Hiemenz and Rajagopalan.

Repulsion between overlapping layers

Hiemenz and Rajagopalan.

$$F_{R} = \frac{\delta \Psi k_{b} T n_{\infty} \int_{0}^{z} exp(-\kappa h)}{seyarahin}$$

$$\Phi = \left(\frac{\Delta - 1}{\delta + 1}\right)$$

$$\Phi = c_{xy} \left(\frac{2e\Psi}{2\kappa_{b}T}\right)$$

$$F_{\mu} = c_{\mu} n_{\infty} exp(-c_{\mu} n_{\infty}^{\prime\prime\prime}) \frac{\Gamma}{F_{\mu}} \frac{1}{\epsilon_{\mu}}$$

$$F_{\mu} = c_{\mu} n_{\infty} exp(-c_{\mu} n_{\infty}^{\prime\prime\prime}) \frac{F_{\mu}}{\epsilon_{\mu}}$$

$$V = \int du = \int F_{R}(h) dh$$

$$T = \int du = \int F_{R}(h) dh$$

$$F_{R}(h) dh$$

$$F_{R}(h) dh$$

$$U(h) = 64 k_b T n_p \hat{P}_0^2 k^{-1} \exp(hk)$$

Es
$$U_{tot} = U_{tot} + V_{vDW}$$

$$\begin{array}{ll} (equilibrium & \underline{dv_{+,+}} = 0 \\ dD \\ & \underline{dD} \\ & \underline{h} \end{array}$$

Stabilization of colloids: DLVO theory

FIGURE 2.24 Electrostatic stabilization of metal colloids. Van der Waals attraction and electrostatic repulsion compete with each other.²⁷

Mulvaney.

Net interaction energy governs stability

Israelachvili.

Fig. 12.12. Schematic energy versus distance profiles of DLVO interaction. (a) Surfaces repel strongly; small colloidal particles remain 'stable'. (b) Surfaces come into stable equilibrium at secondary minimum if it is deep enough; colloids remain 'kinetically' stable. (c) Surfaces come into secondary minimum; colloids coagulate slowly. (d) The 'critical coagulation concentration'. Surfaces may remain in secondary minimum or adhere; colloids coagulate rapidly. (e) Surfaces and colloids coalesce rapidly.

- a) Strong long-range repulsion, fully dispersed
 - highly-charged surface in dilute electrolyte; long Debye length
- b) Kinetically stable at secondary minimum or fully dispersed
 - higher electrolyte concentration than (a)
- c) Slow aggregation
 - low surface charge density
- d) Rapid coagulation
- e) Effectively no repulsion

Example: interaction between a pair of Au particles

FIGURE 5.4 Plot of the interaction energy between two spherical gold particles in aqueous solution as a function of the particle separation, for several particle radii. Hamaker constant = 25×10^{-20} J, I = 1 mM, $\psi_0 = 0.10$ V, a = 1.0 nm, 3.0 nm, and 10.0 nm, Debye length = 10 nm. Note that the secondary minimum is negligible for nanoparticles, but becomes important above 10 nm.

Mulvaney.

Example: interaction between a pair of Au particles

FIGURE 5.5 Plot of the interaction energy between two spherical gold particles in aqueous solution as a function of the particle separation for several surface potentials. Hamaker constant = 25×10^{-20} J, I = 10 mM, a = 10 nm, Debye length = 3 nm. Note that a zeta potential, $|\zeta| > 50$ mV, is necessary for colloid stability because of the high Hamaker constant.

Mulvaney.

Diffuse layer and Stern layer

- Zeta potential is typically measured
- Think about slip..

Hiemenz and Rajagopalan.

FIG. 11.9 Schematic illustration of the variation of potential the presence of a Stern layer. See Chapter 12 for discussion of s

Overlapping double layers in a nanogap

Figure 1: Schematic diagram and equivalent circuits of conventional electrode polarization (a) & (b) and nanogap electrodes (c) & (d).

Ratio of distance from center to electrode spacing[x/L)

Figure 5: Electric potential between two electrodes for various channel width; the concentration of solution is 0.1mM of 1:1 electrolyte.

Oh et al., IEEE MEMS 03.

Nanofluidic transistors

Karnik et al., Nano Letters 5(5):943-948, 2005.

©2010 | A.J. Hart | 37

Electrophoresis: placing particles in gaps

Figure 7. Schematic image showing regions where different forces dominate during DEP assembly of nanoparticles into nanogaps at voltages lower (left) and higher (right) than the threshold voltage.

- Motion is diffusive (Brownian) far from gap
- Substrate-particle repulsion dominates at low V
- "Spherical" DEP region grows and dominates at high V
- EP-induced oscillation only important at low frequencies

 $V = 1.5 \lor 2 \lor 3 \lor$

Dielectrophoresis for positioning CNTs

Vijayaraghavan et al., Nano Lett, V.7 No. 6, 1556-1560, 2007.

Electric field-directed growth of CNTs

\rightarrow Alignment force vs. thermal vibration

Zhang et al., Applied Physics Letters 79, 2001

Zhang et al *Appl Phys Lett* 79, 2001 Homma et al *Appl Phys Lett* 88, 2006