Nanomanufacturing University of Michigan ME599-002 | Winter 2010

15: Nanowire/nanotube synthesis; bulk production and top-down integration

March 15, 2010

John Hart ajohnh@umich.edu http://www.umich.edu/~ajohnh

Announcements

- Video due 5pm today (Mar/15)
 - Please bring file on USB stick Wednesday
 - Peer review info TBA (due Mar/26)
- PS3 due Wed (Mar/17)
 - Q2, Q3 \rightarrow qualitative answers OK; ask questions during lecture today
- PS2 returned Wed, also HW3 solution to be posted Wed

Recap: NP growth kinetics – size broadening and focusing

Fig. 3. $[dr/dt]/K_D$ or $[dln(\Delta r)/dt]/K_D$ as a function of r for diffusion-controlled growth with the infinite diffusion layer; the size distribution is broadened for r < 2r*, while narrowed for r > 2r*.

Sugimoto, Adv. Colloid Interface Science 28:65, 1987.

Good separation of nucleation and growth

Poor separation of nucleation and growth

Park et al., Nature Materials 3:891, 2004.

Today's agenda

- General methods of making 1D nanostructures
- Synthesis of nanotubes and nanowires by CVD methods:
 - Basic growth mechanisms
 - Furnace designs
 - Nucleation and catalyst performance
 - Preparation and deposition of nanoparticle catalysts
 - CNT and NW growth on substrates: morphology control and parameter trends
 - Limiting mechanisms: kinetics, diffusion, impurities, defects

Readings for lectures 13-15

Nominal: (ctools)

- AJH written notes (one file for today and wednesday)
- Sugimoto, "Preparation of monodispersed colloidal particles"
 - Through page 73, needed as backup to lecture notes only
- Peng et al., "Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: focusing of size distributions"
- Kodambaka et al., "Growth kinetics of Si and Ge nanowires"
- Hochbaum et al., "Controlled growth of Si nanowire arrays for device integration"
- Terranova et al., "The world of carbon nanotubes: an overview of CVD growth methodologies"
- Wirth et al., "Diffusion- and reaction-limited growth of carbon nanotube forests"

Readings for lectures 13-15

Extras: (ctools)

- Burda et al., excerpt from "Chemistry and properties of nanocrystals of different shapes"
 - ightarrow More detail on chemical methods of NP synthesis, self-assembly
- Xia et al., "One-dimensional nanostructures: synthesis, characterizaton, and applications"
 - \rightarrow Broad overview of top-down and bottom-up NW/NT synthesis
- Wagner and Ellis, "The vapor-liquid-solid method of crystal growth and its application to silicon"
- Hofmann et al., "Ledge-flow-controlled catalyst interface dynamics during Si nanowire growth"
- Harutyunyan et al., "Preferential growth of single-walled carbon nanotubes with metallic conductivity"

Building blocks

0-D

Nanoclusters

Magic #'s of atoms ≤1 nm size

Nanoparticles 100' s-1000' s of atoms ~1-100 nm diameter

Nanowires

Filled

2-D

Nanosheets ~1 atom thick

~1-100 nm dia, up to mm long and beyond!

Hollow

Nanotubes

Ways of making '1D' nanostructures

Fig. 1. Schematic illustrations of six different strategies that have been demonstrated for achieving 1D growth: a) dictation by the anisotropic crystallographic structure of a solid; B) confinement by a liquid droplet as in the vapor–liquid– solid process; C) direction through the use of a template; D) kinetic control provided by a capping reagent; E) self-assembly of 0D nanostructures; and F) size reduction of a 1D microstructure.

Ways of making '1D' nanostructures

Fig. 1. Schematic illustrations of six different strategies that have been demonstrated for achieving 1D growth: a) dictation by the anisotropic crystallographic structure of a solid; B) confinement by a liquid droplet as in the vapor–liquid– solid process; C) direction through the use of a template; D) kinetic control provided by a capping reagent; E) self-assembly of 0D nanostructures; and F) size reduction of a 1D microstructure.

©2010 | A.J. Hart | 10

50 nm

Templating methods

Fig. 6. Schematic illustrations of procedures that generated 1D nanostructures by A) shadow evaporation [58]; B) reconstruction at the bottom of V-grooves [60]; C) cleaved-edge overgrowth on the cross-section of a multilayer film [64]; and D) templating against step edges on the surface of a solid substrate [68].

Xia et al., Advanced Materials 15(5):353, 2003.

Templating methods

Xia et al., *Advanced Materials* 15(5):353, 2003. Meng et al., *Angewandte Chemie* 48:1-6, 2009.

Many materials can be made into nanotubes and nanowires

Nanowires

- Catalytic growth: Si, SiGe, CdS, CdTe, ZnO, InAs, ...
- Overall ANY 1D nanocrystal with anisotropic crystal structure, by the Vapor-Solid (VS) method
- Nanotubes
 - Catalytic growth: C, Ws₂
 - Many others by templating, e.g., TiO₂, metals
- "Catalysts"
 - have surface and/or bulk solubility for the precursor (or dissociated precursor)

2. Materials systems

Silicon was the system first investigated by Wagner and Ellis [1] and it remains one of the most intensively studied systems [7,10–14,*15,16–19]. Lieber's group [*8] has studied silicon extensively including the formation of branched Si nanowires (SiNW) [20]. Carbon nanotubes [2,21,22] and carbon nanofibers [23] are also produced by catalytic growth [24,25]. Heterojunctions between SiNW and CNT have been formed [26]. Other materials that exhibit catalytic growth of nanowires include SiO_x (a substoichiometric silicon oxide) [27]; SiO₂ [28,29]; Si_{1-x}Ge_x [10,30]; Ge [31,*32]; AlN [33]; y-Al₂O₃ [34]; oxide-coated B [*35]; CN_x [36]; CdO [37]; CdS [38]; CdSe [*9]; CdTe [*9]; α - Fe_2O_3 (hematite), ε -Fe₂O₃ and Fe₃O₄ (magnetite) [39]; GaAs [15,40,*41,42,*43,44]; GaN [18]; Ga₂O₃ [18,45]; GaP [40,*41,*46]; InAs [*41,*47]; InN (hexangular structures) [48]; InP [*9,*41,42]; In₂O₃ [45]; In₂Se₃ [49]; LiF [50]; SnO₂ [45,51,*52]; ZnO nanowires [*7,*8,53] and nanoplates [53]; ZnS [54]; ZnSe [55]; Mn doped Zn₂SO₄ [56]; and ZnTe [57]. Let us now look at the conditions under which catalytic growth has been used to create nanostructures so that we can better understand the range of growth conditions that have been used, as well as the similarities and differences in growth characteristics that have been observed so that we may generalize about some of the important mechanistic characteristics.

Kolasinski, Current Opinion in Solid State and Materials Science 10:182, 2006.

Semiconductor bandgaps → nanowire tunability

Dick, Progress in Crystal Growth and Characterization of Materials 54:138-173, 2008. ©2010 | A.J. Hart | 14

The original: vapor-liquid-solid (VLS) model

Wagner and Ellis, *Trans. AIME* 233:1053, 1965; S. Hofmann (Cambridge).

©2010 | A.J. Hart | 15

catalyst

activation barrier

lowers

Catalytic chemical vapor deposition (C-CVD) of nanowires/nanotubes (NWs/NTs)

Base vs. tip growth (CNTs)

Hayashi et al., Nano Letters 3(7):888, 2003.

Phases and the catalyst-wire interface

Figure 1. Schematic of VLS growth of Si nanowires (SiNWs). (*a*) A liquid alloy droplet AuSi is first formed above the eutectic temperature (363 °C) of Au and Si. The continued feeding of Si in the vapour phase into the liquid alloy causes oversaturation of the liquid alloy, resulting in nucleation and directional nanowire growth. (*b*) Binary phase diagram for Au and Si illustrating the thermodynamics of VLS growth.

Figure 3. (*a*) HRTEM image of the catalyst alloy/NW interface of a SiNW with a $\langle 111 \rangle$ growth axis. Scale bar: 20 nm. (*b*) HRTEM image of a catalyst alloy/NW interface of a SiNW with a $\langle 110 \rangle$ growth axis. Scale bar: 5 nm. (*c*) HRTEM cross-sectional image (scale bars: 5 nm) and (*d*) equilibrium shapes for the NW cross sections predicted by Wulff construction. Adapted from [11].

Heterostructures

Figure 3. NWs of different structures based on the "bottom-up" growth mode: a) Exposure of a metal-droplet-coated substrate to reactant precursors; b) a monophase NW grown outwards, with the metal droplet acting as catalyst; c) a superlattice NW grown by consecutively alternating the reactant precursors; d) a coaxial NW formed by conformal coating of the preformed nanowire in (b) with a different material.

Core-shell nanowires

Lauhon et al, *Nature* 420, 2003. Qian et al, *Nano Letters* 5, 2005.

Hybrids: nanowires grown on nanotubes

Ok et al., submitted, 2010; review by Eder, Chemical Reviews 110:1348-1385, 2010.

Why CVD?

Low temperature and low cost (relatively)

- Adaptable to a wide variety of structures (based on catalyst and reactant choice)
- Low defect density
- Rapid growth
- Direct growth on substrates
- Scalable to large areas and reactor volumes

CVD growth systems

Vertical tube, fluidized bed

CNT reactor design: tube furnace

Fig. 10. Scheme of apparatus for nanotube synthesis by thermal CVD (reprinted with permission from [47], copyright 2002, Elsevier).

Terranova et al., Chemical Vapor Deposition 12:315, 2006.

CNT forest growth on 4" silicon wafers

VA-CNT arrays on 4" wafers (S. Fan and K. Jiang, Tsinghua Univ)

Large rotary tube furnace

Heater coil

Tube OD = 400 mm, \$0.9M, ~100 tons/yr @24-7 (courtesy R. Blackmon, Harper International)

Reactor design: plasma-enhanced CVD

Fig. 7. Scheme of an inductively coupled plasma reactor with independent RF power CVD (reprinted with permission from [44]; copyright 2002, American Institute of Physics).

Terranova et al., Chemical Vapor Deposition 12:315, 2006.

FIGURE 11 SEM images of as-printed Co colloid (a) dot and (b) line patterns (scalebars 4 µm, 3 µm, respectively)

FIGURE 12 SEM images of (a) dot and (b) line patterned, aligned CNF arrays. Growth conditions: $1:4 C_2H_2: NH_3$ flow at 600 V DC bias, 500 °C for 15 min (scalebars $2 \mu m$, 100 nm, respectively)

Reactor design: fluidized bed

Gas mass flow control

Figure 4. Sketch of a typical fluidized-bed reactor setup. A cylindrical reactor is affixed within a high-temperature furnace with appropriate temperature, pressure, and gas flow controls, connected to a data logging system. Environmental mitigation systems are incorporated to remove entrained solid particles in the off-gas before venting to atmosphere.

See et al., Ind. Eng. Chem. Res. 46:997, 2007.

Large fluidized bed reactor

Fluidized bed reactor: 30 kg/h MWNTs = 265 tons/yr @24-7 (F. Wei, Tsinghua Univ)

Configurations

Order = length, alignment, quality **Quantity =** #/volume

Applications

Three important stages

1. Preparation of the catalyst

Formation and treatment (e.g., reduction of the nanoparticles)

Tangled or aligned?

2. Nucleation

- Organization and "liftoff" of the structure (for NTs, the cap) on the catalyst surface

3. Growth

- Steady "extrusion" of the structure from the particle

- Role of mechanical stiffness, VDW forces, thermal vibration, etc.

Key questions for understanding and controlling CVD growth of nanotubes and nanowires

- What determines the NT/NW relationship with the catalyst? structure, and its geometry (diameter, taper) and chirality?
- Is the catalyst solid or liquid?
- What are the ideal (direct) chemical precursors? How is the precursor incorporated at the catalyst?
- How does the size distribution develop/evolve due to the nucleation and growth conditions?
- What limits catalyst lifetime, and why does the catalyst deactivate?
- What are the precise effects of oxidizing and reducing agents (sometimes impurities) on:
 - the catalyst size and structure
 - the gas-phase reaction(s)
 - the gas-catalyst reaction(s)

Inputs and outputs

<u>INPUTS</u>

Catalyst and support:

- Material and composition
- Particle size
- Chemical state (annealing)
- Surface roughness

Reaction conditions:

- Substrate temperature
- Pressure
- Reactant composition
- Buffer/etchant composition
- Reactant pre-treatment
- Supply rates
- Flow profiles/dynamics
- Time and temporal adjustment
- Forces acting during growth

<u>OUTPUTS</u>

- Diameter and structure
- Length, growth rate, lifetime
- Defect density
- Properties: electrical, mechanical, thermal, optical, etc...

Simulating nucleation

Limitations:

- substrate (free vs. supported)
- precursor (C vs. hydrocarbon)
- model size

- time

Zhu et al., Small 1(12):1180, 2005.

Snapshots of SWNT nucleation

Figure 7. (a-c) ETEM image sequence of Ni-catalyzed CNT root growth recorded in 8×10^{-3} mbar C₂H₂ at 615 °C (extracted from Supporting Information video S2). The time of the respective stills is indicated. (d-f) Schematic ball-and-stick model of different SWNT growth stages.

Hofmann et al., Nano Letters 7(3):602-608, 2007.
Watching nucleation of a CNT by tip growth

Helveg et al, Nature, 427:426-429, 2004

Nucleation of SiNWs by phase separation (liquid Au catalyst in Si₂H₆)

Video S1 on journal website

- Rate of Si inclusion ~R²
- Si concentration ~1/R³
- Thus, rate of supersaturation ~1/R

Hofmann et al., Nature Materials 7:372-375, 2008.

Ledge flow during SiNW growth from Pd catalyst (solid Pd_xSi)

Video S4 on journal website

Hofmann et al., Nature Materials 7:372-375, 2008.

Is the catalyst solid or liquid?

Figure 3. Melting temperature of selected metals as a function of particle diameter.

Moisala et al., J. Phys. Cond. Matt. 15:S3011, 2003.

Catalyst can be solid (VSS) or liquid (VLS), but VLS growth is much faster

Germanium nanowires. The mechanism by which Ge nanowires grow may depend not only on the temperature but also on the diameter of the nanowire, as shown by Kodambaka *et al.* Above $T_{\rm E}$ (left), the nanowires have a liquid gold cap and grow via VLS growth. Below $T_{\rm E}$ (right), the cap of relatively thick nanowires is liquid, whereas the cap of relatively thin nanowires becomes a crystalline solid. The latter nanowires grow via a different mechanism that is slower than VLS growth. Liquid, 340°C

Solid

Fig. 2. (**A**) Series of images of a single Ge wire acquired at times t = 0, 309, and 618 s (from left to right, respectively) during growth by the VLS mechanism at 340°C and 4.6×10^{-6} Torr Ge₂H₆. The background features act as markers, showing a growth rate of 9.9×10^{-2} nm/s. (**B**) Another image series for a second wire growing at the same temperature and pressure but with a solid catalyst at t = 0, 1340, and 1824 s (from left to right, respectively). The growth rate for this VSS mode is 1.3×10^{-2} nm/s.

Verification that the catalyst can be solid during growth

Figure 3 TEM image and electron diffraction of a GaAs nanowire at high temperature. a, A wire with a solid gold particle, imaged at 540 °C (equivalent to the growth temperature). b, Defocused diffraction pattern of the whisker at 540 °C proving the crystallinity. The encircled area in a is the central spot of the diffraction pattern. The set of defocused diffracted beams originating from the gold–gallium alloy lattice, one marked with an arrow, contains a bright diffraction image of the seed particle. The projection of the seed particle is close to [110] of a face-centred-cubic lattice. The off-axis diffraction spots originating from the GaAs part of the wire can be seen along the arc A–B. The contrast in the direct beam at the centre has been reduced in brightness to enhance visibility.

Persson et al., Nature Materials 3:677, 2004.

What elements are CNT growth catalysts?

- SWNTs
- MWNTs
- As primary part of a two-component catalyst, SWNTs
- •Oxide

1 H hydrogen 1.007 94(7)	2	_	Key:									13	14	15	16	17	2 He helium 4.002 602(2)
3	4		atomic numb	ber								5	6	7	8	9	10
Li	Ве		Symbo	bl								В	С	N	0	F	Ne
lithium	beryllium	beryllium name p.n.12_182/31 standard atomic weight									boron	carbon	nitrogen	oxygen	fluorine	neon	
11	12											13	14	14.0007(2)	16	17	18
Na	Ma											AI	Si	Р	s	CI	Ar
sodium	magnesium	3	4	5	6	7	8	9	10	11	12	aluminium	silicon	phosphorus	sulfur	chlorine	argon
22.989 769 28(2) 1 Q	24.3050(6) 20	21	22	23	24	25	26	27	28	20	30	26.981 538 6(8) 2.1	28.0855(3)	30.973 762(2)	32.065(5) 3.4	35.453(2) 2.5	39.948(1) 26
ĸ	Ĉa	Śc	Ti	V V	Ĉr	Mn	Eo	Čo	Ni	Cu	7n	Ga	G	Δε	So	Br	Kr
potassium	calcium	scandium	titanium	vanadium	chromium	manganese	iron	cobalt	nickel	copper	zinc	gallium	germanium	arsenic	selenium	bromine	krypton
39.0983(1)	40.078(4)	44.955 912(6)	47.867(1)	50.9415(1)	51.9961(6)	54.938 045(5)	55.845(2)	58.933 195(5)	58.6934(2)	63.546(3)	65.409(4)	69.723(1)	72.64(1)	74.921 60(2)	78.96(3)	79.904(1)	83.798(2)
37	38	39	40	41	42	43	44 D	45	46	4/	48	49	50	51 Ch	52	53	54 V -
KD	Sr	Y	Zr 📕	ND	IVIO	IC	RU	Rn	Pa	Ag	Ca	In	Sn	SD	Ie	i di se	xe
85.4678(3)	87.62(1)	yttnum 88.905 85(2)	21rconium 91.224(2)	92.906 38(2)	95.94(2)	[97.9072]	101.07(2)	102.905 50(2)	106.42(1)	SIIVEr 107.8682(2)	cadmium 112.411(8)	114.818(3)	un 118.71D(7)	121.760(1)	127.60(3)	126.904 47(3)	xenon 131.293(6)
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	lanthanoids	Hf	Та	w	Re 🚽	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
caesium	barium		hafnium	tantalum	tungsten	rhenium	osmium	iridium	platinum	gold	mercury 200 59(2)	thallium	lead	bismuth	polonium	astatine	radon (222.0178)
87	88	89-103	104	105	106	107	108	109	110	111	200.08(2)	204.0000(2)	207.2(1)	200.000 40(1)	[200.0024]	200.0071]	[222.0170]
Fr	Ra	actinoids	Rf	Db	Sa	Bh	Hs	Mt	Ds	Ra							
francium	radium		rutherfordium	dubnium	seaborgium	bohrium	hassium	meitnerium	darmstadtium	roentgenium							
[223]	[226]		[261]	[262]	[266]	[264]	[277]	[268]	[271]	[272]							
			50	50						0.5					70		
		57	58	59 D	60 N al	61 Data	62 Care	63	64	65	66 D. (67	68	69	70 Mb	71	
		La	Ce	Pr	Na	PM	Sm	Eu	Ga	ID	Dy	HO	Er	IM	Ϋ́D	LU	
		138.905 47(7)	140.116(1)	140.907 65(2)	144.242(3)	[145]	150.36(2)	151.964(1)	157.25(3)	158.925 35(2)	162.500(1)	164.930 32(2)	167.259(3)	168.934 21(2)	173.04(3)	174.967(1)	
		89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	
		Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
		actinium (227)	thorium	protactinium	uranium 238.028.91(3)	neptunium (237)	plutonium 12441	americium 12431	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium (2591	lawrencium r2621	
		(111)	202.000 00(2)	201100000(2)	200.020 01(0)	100	(a. r.)	[240]	[and]	[211]	(Lot)	[202]	(201)	[200]	[200]	(272)	I

18

Compiled from many sources with input from Stephen Steiner; updated March 2009. ©2010 | A.J. Hart | 43

Catalyst deposition on a substrate: dip-coating or annealing a thin-film

Li et al., J. Phys. Chem. B 105(46):11424-31, 2001

Deposit a thin film \longrightarrow Anneal to form particles Fe (1 nm) Al₂O₃ (10 nm) Si

500 nm

CNT diameter control by size of nanoparticles made by chemical methods

Cheung et al, JPCB 106:2429-33, 2002.

Size-driven structure transitions

Wang et al., Journal of Applied Physics 98:014312, 2005.

CoMoCat process

Resasco et al., University of Oklahoma

CNT diameter control by carbon supply rate

Lu and Liu, Journal of Physical Chemistry B 110:20254-7, 2006.

Limiting cases of carbon deposition

Figure 2-11. Limiting scenarios of carbon deposition, diffusion, and precipitation under CVD reaction conditions (from [177]): (b) rate of carbon supply or conversion is too low, and the catalyst particle is encapsulated by graphitic layers; (c) nucleation and growth conditions are appropriate and CNTs grow normally; (d) rate of carbon supply is too high and carbon coats the catalyst and substrate before nucleation occurs.

Seidel et al., Journal of Physical Chemistry B, 108:1888 2004.

Gas-phase reactions

1→2→4: Adsorption of hydrocarbon, dissociation of carbon, incorporation to filament

 $1 \rightarrow 2 \rightarrow 5$: Adsorption, dissociation, encapsulation

 $6 \rightarrow 7 \rightarrow 8$: Gas-phase polymerization, encapsulation

Effects of O₂ and H₂ are also important

C_2H_4/H_2 forms a polydisperse ambient

Plata, Hart, Reddy, Gschwend. *Environmental Science and Technology*, 2009. Meshot, Plata, Tawfick, Zhang, Verploegen, Hart. *ACS Nano*, 2009.

Plata, Hart, Reddy, Gschwend. *Environmental Science and Technology*, 2009. Meshot, Plata, Tawfick, Zhang, Verploegen, Hart. *ACS Nano*, 2009.

CNT films: tangled vs. aligned

(1) Mo/Fe/Al₂O₃ in CH₄/H₂, 875 °C

(2) Fe/Al₂O₃ in C₂H₄/H₂, 750 °C

Hart, Slocum, Royer, Carbon 44:348-59, 2006.

Low activity carbon source

High activity carbon source

SWNTs

Ē

*SWNT selectivity

Mo mediates

Physically making ~2 nm nanoparticles: e-beam lithography and angled deposition

Figure 1. Formation of regular arrays of metal clusters down to 2 nm in diameter. (A) Arrays of 20–50 nm wells are patterned in ~100 nm thick PMMA on Si/SiO₂ (10 nm) substrates by electron-beam lithography. Thin metal films (0.2–2 nm) are then deposited by an electron-beam evaporator at a 5–10° angle with respect to the substrate normal. (B) After lift-off and annealing, one or multiple particles per well are formed depending on the well size. Inset: formation of a ~2 nm particle when the radius of metal-deposited area (dotted region) *r* is less than or equal to the metal atom diffusion length, l_{diff} . Angle evaporation reduces *r* by shadowing of the vertical PMMA wall. Dashed circles: bottom of the PMMA wells.

Or just e-beam lithography to achieve ~20-200 nm dots and lines

Figure 2. Patterning of monodispersed ~2 and ~7 nm Co nanoclusters. (A) Scanning electron microscopy image of patterned wells (holes) in a PMMA-coated Si/SiO₂ substrate. Diameter of wells in each row increases by ~5% and ranges from ~20 nm on top to ~30 nm at the bottom. (B) AFM image of rows of single (top right) and multiple (bottom right) ~2.2 nm Co particles and topographic line scans. The particle diameter is on the order of the measured height of ~2.2 nm as the apparent width is due to AFM tip effect. (C) AFM image of rows of single (top right, topography in middle; histogram at bottom) and multiple ~7 nm Co particles.

Figure 4. Deterministic growth of SWNTs from patterned discrete Co nanoparticles. (A and B): AFM images of nanotubes grown from arrays of 1-2 nm Co particles (pointed by arrows) with nearly one-particle to one-nanotube correspondence. The four SWNTs in (B) have a mean diameter of ~1.7 nm. The nanotube diameter is known to be determined by the diameter of the catalyst dot.

Isolated CNTs: bridging

Figure 6. Box plot of two different tip apex geometries. Figures in parenthesis indicate the number of measured tip pairs. The ultra-sharp tips have a mean number of spanned SWNT of 1 tube per tip pair.

Jungen et al., J. Micromech Microeng., 17:603-608, 2007.

Controlling film morphology by varying catalyst particle number density

Q: What is the critical catalyst density for vertically aligned growth?

but only ≈5% activity!

Morphology control: Bennett, Hart, Cohen, *Advanced Materials* 18:2274-9, 2006. Micro-contact printing: Bennett, Hart, et al., *Langmuir* 22:8273-8276, 2006.

CNT growth on microstructures and microstructures made of CNTs

Hart, Slocum, et al., *Carbon* 44:348-59, 2006; *Nanotechnology* 17:1397-1403, 2006; *J. Phys. Chem. B* 110:8250-7, 2006; *Nano Letters* 6:1254-60, 2006.

CNT forest microstructures

Acc.V Spot Magn Det 5.00 kV 3.0 50x SE 5 μm

Sharp corner

Loss of self-stability

3D substrates: growth on woven microfibers

On alumina/glass fiber hose

Yamamoto, Hart, et al., Carbon 47(3):551-560, 2009.

Vertical nanowire arrays

Hochbaum et al., Nano Letters 5(3):457, 2005.

©2010 | A.J. Hart | 61

1.0

ľ

0.8

0.6

Relative Colloid Concentration

0.4

Vertical nanowire arrays

Hochbaum et al., Nano Letters 5(3):457, 2005.

Catalyst ripening (size broadening) causes NW diameters to change during growth

Figure 5. Upper panel shows TEM images of three Si wires labeled A, B, and C acquired at four successive times t (indicated on the images) and a plot of their droplet volumes V vs. t during wire growth at T = 655 °C and disilane pressure of 1×10^{-6} Torr. Lower panel is a schematic illustration of the wire tapering that occurs as a result of catalyst droplet coarsening. [Adapted from Ref. 57]

Kodambaka et al., Proc. of SPIE Vol. 7224 72240C-1, 2009.

Oxygen can be used to stop the Au catalyst from shrinking

Figure 3. Effect of increasing oxygen pressure on Si wire growth kinetics. (A) Series of images extracted from a video sequence showing the effect of introducing oxygen to a wire that was previously growing in disilane. The growth was carried out in 4.5 $\times 10^{-6}$ Torr disilane at 610 °C for 111 minutes. At this point a wire was chosen that was tapering rapidly due to migration of Au from its droplet, and 5×10^{-7} Torr oxygen was introduced while maintaining the disilane pressure constant. The scale bar is 50 nm. (B) Length *L* of the wire as a function of time *t*, showing that growth continues at the same rate in the presence of oxygen. The oxygen pressure is superimposed. (C) Volume *V* of the droplet as a function of time *t*.

Kodambaka et al., Nano Letters 6(6):1292-1296, 2006

Oxygen passivates the Si surface (no Au migration), so catalyst stops shrinking!

Material can also be supplied by surface diffusion on the substrate

Figure 1. How gallium phosphide (GaP) nanowires grow. **a**, Gallium species that hit the substrate within one diffusion length of the growth interface between the seed particle (gold) and the nanowire contribute to nanowire growth by diffusing to the growth front. Gallium species that hit the substrate outside this region (which is shown in blue) either desorb or contribute to film growth on the substrate. Phosphorus is almost insoluble in gold and must reach the growth interface from the side. **b**, A schematic showing the logarithm of the rate of growth versus the reciprocal temperature (in Kelvin) for two-dimensional (2D) epitaxial film growth (black line), gold-seeded nanowire growth (blue line), and catalytic gold-seeded nanowire growth (red line). The gold-seeded nanowire growth rate is orders of magnitude higher than the two-dimensional film growth rate, even though the activation energies are the same. The rate for catalytic gold-seeded nanowire growth is even higher.

Borgstrom et al., Nature Nanotechnology 2:541, 2007.

Catalyst density affects kinetics by competition for precursor supply (GaNWs)

Borgstrom et al., Nature Nanotechnology 2:541, 2007.

CNT film growth: limiting steps are C_2H_2 dissociation then diffusion in the catalyst

Ю

Ar/H

Н,

10⁰

10¹

 10^{2}

cold-wall conditions, P^{0.61±0.03}. CNTs were grown from an Fe/Al₂O₃ catalyst at 700 °C for 5 min. For low pressures, the growth gas is pure acetylene, and the Fe film was activated in an NH₃ atmosphere. For the higher pressure regime, growth was performed in a H₂ mixture and above 10 mbar in an Ar/H₂ mixture.

Wirth et al., ACS Nano 3(11):3560-3566, 2009.

Apparent activation energies at different pressures are the same (≈0.95 eV)

Arrhenius equation $\,k=Ae^{-E_a/RT}$

Figure 4. (a) Arrhenius plots for CNT growth rates for atmospheric pressure (**●**) hot-walled furnace growth and (**▲**) cold-walled direct heating method from an Fe-Al₂O₃ catalyst in Ar/H₂/C₂H₂ (14 mbar partial pressure C₂H₂). The activation energies are calculated from the slope of the linear fit to the data, (**●**) $\Delta E = 0.95 \pm 0.04 \text{ eV}$, (**▲**) $\Delta E = 0.92 \pm 0.04 \text{ eV}$. (b) Arrhenius plot at a pressure of 15 mbar in a H₂/C₂H₂ mixture (0.37 mbar partial pressure C₂H₂), $\Delta E = 0.93 \pm 0.1 \text{ eV}$. The catalyst was heated in H₂ before C₂H₂ was fed into the system. (c) Arrhenius plot at a pressure of 10⁻³ mbar C₂H₂, $\Delta E = 0.98 \pm 0.1 \text{ eV}$. The C₂H₂ was undiluted during growth. The catalyst film was annealed in NH₃ prior to growth for 5 min.

Wirth et al., ACS Nano 3(11):3560-3566, 2009.

Is diffusion by surface or bulk?

FIG. 2. Arrhenius plots for CNF growth rates on different catalysts in NH₃ diluted C_2H_2 . The activation energies are calculated from the slope of the linear fit to the data. Temperature dependent changes in the CNFs crystallinity are not considered. The dotted line is the growth rate variation for Ni thermal CVD ($E_{act} = 1.21$ eV [11,42]).

Hofmann et al., Physical Review Letters, 95(3):036101 2005.

Catalyst ripening and migration during CNT film growth

Figure 1. Plan-view TEM images of annealed Fe/Al_2O_3 catalyst layers at 750 °C for various labeled times for (a) 30 s, (b) 5 min, (c) 15 min, and (d) 30 min. Insets are cross-sectional views demonstrating subsurface diffusion of Fe into the Al_2O_3 layer. (e) Statistical representation of the catalyst particle size distribution for the four cases shown in (a)–(d) and the as-deposited Fe sample.

©2010 | A.J. Hart | 70

Kim et al., JPC Letters (in press), 2010.

Graphene growth and transfer printing

Figure 1 | Synthesis, etching and transfer processes for the largescale and patterned graphene films. a, Synthesis of patterned graphene films on thin nickel layers. b, Etching using FeCl₃ (or acids) and transfer of graphene films using a PDMS stamp. c, Etching using BOE or hydrogen fluoride (HF) solution and transfer of graphene films. RT, room temperature (~ 25 °C).

Kim et al., *Nature* 457:706-710, 2009.

Figure 2 | **Various spectroscopic analyses of the large-scale graphene films grown by CVD. a**, SEM images of as-grown graphene films on thin (300-nm) nickel layers and thick (1-mm) Ni foils (inset). **b**, TEM images of graphene films of different thicknesses. **c**, An optical microscope image of the graphene film transferred to a 300-nm-thick silicon dioxide layer. The inset AFM image shows typical rippled structures. **d**, A confocal scanning Raman image corresponding to **c**. The number of layers is estimated from the intensities, shapes and positions of the G-band and 2D-band peaks. **e**, Raman spectra (532-nm laser wavelength) obtained from the corresponding coloured spots in **c** and **d**. a.u., arbitrary units.
Graphene growth mechanisms

Figure 1. Schematic diagrams of the possible distribution of C isotopes in graphene films based on different growth mechanisms for sequential input of C isotopes. (a) Graphene with randomly mixed isotopes such as might occur from surface segregation and/ or precipitation. (b) Graphene with separated isotopes such as might occur by surface adsorption.

Li et al., Nano Letters 9(12):4268-4272, 2009.

Summary: key process conditions and trends

Key variables for CVD growth:

 Reactant composition, supply rate, temperature, pressure, catalyst composition, particle size, substrate

Three important stages:

- Prepare catalyst
- Nucleate
- Grow

Trends:

 \uparrow Catalyst size = \uparrow CNT diameter

- \uparrow Temperature = \uparrow CNT diameter
- \uparrow Carbon feed = \uparrow CNT diameter

CVD growth systems

Teo, 2003.

Reactor design: fluidized bed

Gas mass flow control

Figure 4. Sketch of a typical fluidized-bed reactor setup. A cylindrical reactor is affixed within a high-temperature furnace with appropriate temperature, pressure, and gas flow controls, connected to a data logging system. Environmental mitigation systems are incorporated to remove entrained solid particles in the off-gas before venting to atmosphere.

See et al., Ind. Eng. Chem. Res. 46:997, 2007.

Large fluidized bed reactor

Fluidized bed reactor: 30 kg/h MWNTs = 265 tons/yr @24-7 (F. Wei, Tsinghua Univ)

Worldwide MWNT production (2006 estimate)

Geography	Country	Company	Capacity (kg/hr)	Capacity (tpy) *	
Asia	China	NTP	5	10	
Asia	China	Sun	0.625	5	
Asia	China	Tsinghua (Prof. Fei Wei)	15	15	
Asia _	Korea	ljin	10	10	
Asia	Japan	NCT	5	30	
Asia	Japan	Showa Denko	16.7	100	
Europe		Not Disclosed	0.833	5	
Europe		Not Disclosed	2.5	15	
Europe		Not Disclosed	0.167	1	
Europe		Not Disclosed	1	6	
North America	USA	Hyperion	8.3	50	
North America	USA	Not Disclosed	4	24	
North America Europe Asia			12.3 4.5 52.3	74 27 170	
Total Capacity			69.1	271	

MWNT total ≈ 270 tons/yr SWNT total <10 tons/yr

http://wtec.org/cnm

Large scale CNT manufacturing process: growth, annealing, mixing

- ➢ Floating catalyst CVD
- > Followed by two stages of high temperature treatment
- ➢Now > 300 tons/yr
- ≻ High purity: 99.5 wt% as carbon
- ≻CNT diameter 40-90 nm

Nano Carbon Technologies (NCT), Japan

Healing defects by high-temperature annealing

Figure 2.8. HRTEM images of (a) bulk grade and (b) high purity grade MWCNTs (Courtesy of NCT).

Nano Carbon Technologies (NCT), Japan

Toray: Zeolite-templated SWNT Growth

Zeolite : Crystalline inorganic oxide consisting mainly of silicon

Dispersion of metal catalysts on the surface of zeolites by using uniform nano-structure

SWNTs from ethanol carbon source, zeolite support

Purified 10 g sample

Emission wavelength (nm)

Economics of bulk CNT production

System Type	CNT Capacity (kg/hr)	Total Primary Equipment Investment (K USD)	Installed Investment (8 Year ROI) (USD/kg)	Consumables*			Efficiency	Cost
				Electricity (kWhr/kg)	C Source (m³/kg)	Cost Consumables (USD/kg)	of Catalyst Use (Relative Index)	Production (USD/kg) exclusive of Catalyst & Labor
Rotary Tube 400mm <u>dia</u> .	5	870	5.1	12.5	3.0	8.25	1	13.4
Single Rotary (20 x 400mm)	100	17,550	3.4	12.5	3.0	8.25	1	11.6
Multi-tube Rotary (3 x 400mm <u>dia</u> .)	15	2,090	3.6	10	3.0	8.0	1	11.6
Multi-tube Rotary (7x)	100	14800	2.8	10	3.0	8.0	1	10.8
Cascade Rotaries	5	960	5.5	15	3.0	8.5	1	14.0
Non Quartz Lined Rotary (3 x 1.4m dia.)	100	7800	1.6	6.7	3.5	7.75	1	9.4
Pusher	5	2052	8.8	10	2.0	11.0	< 1	19.8
Pusher (3 x 3000mm W)	100	12900 (3)	2.5	8.6	2.0	10.9	< 1	13.4
Mesh Belt	5	1942	8.4	12.5	2.0	11.4	< 1	19.8
Mesh Belt (2 x 3500mm W)	100	8370 (2)	1.7	7.5	2.0	10.9	< 1	12.6
Fluidized Bed	5	737	4.8	9.5	1.5	4.5	1.25	9.3
Fluidized Bed (3 x 400 mm <u>Dia</u>)	100	3325 (3)	1.0	4.2	1.5	3.5	1.25	4.5

CVD by plasmon resonance heating

Figure 2. (a) Scanning electron microscopy (SEM) image of goldcatalyzed germanium nanowires. (b) SEM image of nickel-catalyzed silicon nanowires. In experiments, we observed that the nickel catalyst at the top of the nanowire was faceted, suggestive of a vapor-solid-solid growth mechanism. (c) TEM image of a multiwall CNT with an encapsulated catalyst inset into a Raman spectrum taken from the CNT growth region. The Raman spectrum shows two narrow line width peaks at 1352 and 1582 cm⁻¹ that are characteristic of CNTs. The absence of the breathing mode peak at ~100-200 cm⁻¹ characteristic of single walled CNTs suggests a high fraction of multiwalled CNTs in the area probed with Raman.

1200

1600

Cao et al., Nano Lett., 2007 (ASAP).